Advanced Search
MyIDEAS: Login to save this paper or follow this series

Effect of Performance Model Accuracy on Optimal Pavement Design

Contents:

Author Info

  • Madanat, S M
  • Prozzi, Jorge A
  • Han, Michael
Registered author(s):

    Abstract

    In the first part of this paper, an analysis of the data collected during the American Association of State Highway Officials (AASHO) Road Test, based on probabilistic duration modeling techniques, is presented. Duration techniques enable the stochastic nature of pavement failure time to be evaluated as well as censored data to be incorporated in the statistical estimation of the model parameters. The second part of this paper presents the use of economic optimization principles for determining the optimal design of flexible pavements. We study the effect of deterioration model accuracy on optimal design and lifecycle costs, by comparing three models. The first is a simple regression model developed by the AASHO, which forms the basis of design standards in use today. The second is a regression model that was developed with the same AASHO data set, but that includes a correction for data censoring. The third model is the probabilistic model developed in the first part of this paper. The results show that the AASHO model, when used as an input to lifecycle cost minimization, produces a pavement structural number that is lower than that produced by using the other two deterioration models. This results in shorter pavement lives and higher costs due to more frequent resurfacing. The savings in lifecycle cost accrued by using optimal structural number are shown to be quite significant, offering a sound basis for revising current design practices.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.escholarship.org/uc/item/42b5n5j6.pdf;origin=repeccitec
    Download Restriction: no

    Bibliographic Info

    Paper provided by University of California Transportation Center in its series University of California Transportation Center, Working Papers with number qt42b5n5j6.

    as in new window
    Length:
    Date of creation: 01 Sep 2002
    Date of revision:
    Handle: RePEc:cdl:uctcwp:qt42b5n5j6

    Contact details of provider:
    Postal: 109 McLaughlin Hall, Mail Code 1720, Berkeley, CA 94720-1720
    Phone: 510-642-3585
    Fax: 510-643-3955
    Email:
    Web page: http://www.escholarship.org/repec/uctc/
    More information through EDIRC

    Related research

    Keywords: Social and Behavioral Sciences;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Small, Kenneth A & Winston, Clifford, 1988. "Optimal Highway Durability," American Economic Review, American Economic Association, American Economic Association, vol. 78(3), pages 560-69, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Sathaye, Nakul & Horvath, Arpad & Madanat, Samer, 2010. "Unintended impacts of increased truck loads on pavement supply-chain emissions," Transportation Research Part A: Policy and Practice, Elsevier, Elsevier, vol. 44(1), pages 1-15, January.
    2. Sathaye, Nakul & Horvath, Arpad & Madanat, Samer M, 2009. "Unintended Impacts of Increased Truck Loads on Pavement Supply-chain Emissions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings, Institute of Transportation Studies, UC Berkeley qt1jf6v73z, Institute of Transportation Studies, UC Berkeley.
    3. Guerrero, Sebastian E. & Madanat, Samer M. & Leachman, Robert C., 2013. "The Trucking Sector Optimization Model: A tool for predicting carrier and shipper responses to policies aiming to reduce GHG emissions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, Elsevier, vol. 59(C), pages 85-107.
    4. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 45(7), pages 1004-1017, August.
    5. Sathaye, Nakul & Horvath, Arpad & Madanat, Samer, 2009. "Unintended Impacts of Increased Truck Loads on Pavement Supply-Chain Emissions," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings, Institute of Transportation Studies, UC Berkeley qt5gt4r1k2, Institute of Transportation Studies, UC Berkeley.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt42b5n5j6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.