Advanced Search
MyIDEAS: Login to save this paper or follow this series

Multimodal Transport Modeling for Nairobi, Kenya: Insights and Recommendations with an Evidence-Based Model

Contents:

Author Info

  • Gonzales, Eric J.
  • Chavis, Celeste
  • Li, Yuwei
  • Daganzo, Carlos F.
Registered author(s):

    Abstract

    Traffic congestion is a growing problem in Nairobi, Kenya, resulting from rapidly increasing population and the crowding of motorized traffic onto a limited street network. This report includes analysis of the traffic conditions in Nairobi, the expected effects of further growth in demand, and a set of recommendations for how to improve the performance of the street network. Data describing motorized vehicle traffic was used to build a simulation model of Nairobi’s street network considering cars and matatus. This model was used to analyze traffic conditions at the city-scale under existing conditions and future growth scenarios. The results provide insights for improving the network performance and support recommendations for Nairobi. City-scale analysis of the street network was conducted with the use of the macroscopic fundamental diagram (MFD) which relates the number of vehicles circulating on the street network to the rate at which trips reach their destinations. The results of simulations with different demand patterns show that there is a consistent MFD relating vehicle accumulation to network flow in Nairobi’s central business district (CBD). Therefore, detailed knowledge of demand is not necessary to understand how the network performs, because the MFD depends on the properties of the street network itself. Monitoring and controlling the number of vehicles in the network is sufficient to maintain traffic flow on the city’s streets. As traffic demand grows in the future, the streets will quickly become more congested, so measures should be taken to improve the system. The first recommendations seek to control the accumulation of vehicles in the network so that traffic flow is maximized according to the MFD. One method is to meter the rate at which vehicles can enter the CBD in order to control accumulation so that everyone can reach their destinations sooner. Metering can be effective in the morning when more vehicles are entering the CBD from outside, but during the evening there are many internally generated trips which will tend to jam the network anyway. Policies that reduce the peak travel demand by shifting trips to public transport or spreading the demand across more time can reduce traffic congestion in the evening. A second set of recommendations expand the shape of the MFD itself by increasing the capacity of the streets in the network which is largely dependent on how intersections operate. Traffic circles (roundabouts) are common in Nairobi, but signalized intersections can have greater capacity. Converting intersections will also reduce the congestion effects when queues spill back into upstream intersections. Capacity can be further increased by adding redundancy to the network. An analysis of dedicating lanes to buses and matatus on radial arterials shows that queues in the remaining lanes will grow longer. In the morning, these queues grow away from the center, so matatus experience reduced travel times, but in the evening, the queues back up into CBD increasing delays for everyone. The simulation study provides an illustration representing Nairobi approximately, so results are relevant and qualitatively useful. Further data could be collected to estimate the real MFD for Nairobi and provide more accurate quantitative values. Although Nairobi’s streets are congested and bound to get worse, the network performance can be improved by making strategic investments in the transport network.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.escholarship.org/uc/item/6dv195p7.pdf;origin=repeccitec
    Download Restriction: no

    Bibliographic Info

    Paper provided by Institute of Transportation Studies, UC Berkeley in its series Institute of Transportation Studies, Research Reports, Working Papers, Proceedings with number qt6dv195p7.

    as in new window
    Length:
    Date of creation: 01 Aug 2009
    Date of revision:
    Handle: RePEc:cdl:itsrrp:qt6dv195p7

    Contact details of provider:
    Postal: 109 McLaughlin Hall, Mail Code 1720, Berkeley, CA 94720-1720
    Phone: 510-642-3585
    Fax: 510-643-3955
    Email:
    Web page: http://www.escholarship.org/repec/its/
    More information through EDIRC

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 41(1), pages 49-62, January.
    2. Daganzo, C. F. & Li, Yuwei & Gonzales, Eric J. & Geroliminis, Nikolas, 2007. "City-Scale Transport Modeling: An Approach for Nairobi, Kenya," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings, Institute of Transportation Studies, UC Berkeley qt7hk8d77b, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Daganzo, Carlos F. & Gayah, Vikash V. & Gonzales, Eric J., 2011. "Macroscopic relations of urban traffic variables: Bifurcations, multivaluedness and instability," Transportation Research Part B: Methodological, Elsevier, Elsevier, vol. 45(1), pages 278-288, January.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6dv195p7. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.