Advanced Search
MyIDEAS: Login to save this paper or follow this series

Universality of Bayesian Predictions

Contents:

Author Info

  • Sancetta, A.

Abstract

Given the sequential update nature of Bayes rule, Bayesian methods find natural application to prediction problems. Advances in computational methods allow to routinely use Bayesian methods in econometrics. Hence, there is a strong case for feasible predictions in a Bayesian framework. This paper studies the theoretical properties of Bayesian predictions and shows that under minimal conditions we can derive finite sample bounds for the loss incurred using Bayesian predictions under the Kullback-Leibler divergence. In particular, the concept of universality of predictions is discussed and universality is established for Bayesian predictions in a variety of settings. These include predictions under almost arbitrary loss functions, model averaging, predictions in a non stationary environment and under model miss-specification. Given the possibility of regime switches and multiple breaks in economic series, as well as the need to choose among different forecasting models, which may inevitably be miss-specified, the finite sample results derived here are of interest to economic and financial forecasting.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.cam.ac.uk/research/repec/cam/pdf/cwpe0755.pdf
File Function: Working Paper Version
Download Restriction: no

Bibliographic Info

Paper provided by Faculty of Economics, University of Cambridge in its series Cambridge Working Papers in Economics with number 0755.

as in new window
Length: 24
Date of creation: Nov 2007
Date of revision:
Handle: RePEc:cam:camdae:0755

Contact details of provider:
Web page: http://www.econ.cam.ac.uk/index.htm

Related research

Keywords: Bayesian prediction; model averaging; universal prediction.;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0755. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Howard Cobb).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.