Advanced Search
MyIDEAS: Login

Bootstrap simultaneous error bars for nonparametric regression

Contents:

Author Info

  • Haerdle,W.
  • Marron,J.S.

    (University of Bonn)

Abstract

No abstract is available for this item.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by University of Bonn, Germany in its series Discussion Paper Serie A with number 227.

as in new window
Length:
Date of creation: Mar 1989
Date of revision:
Handle: RePEc:bon:bonsfa:227

Contact details of provider:
Postal: Bonn Graduate School of Economics, University of Bonn, Adenauerallee 24 - 26, 53113 Bonn, Germany
Fax: +49 228 73 6884
Web page: http://www.bgse.uni-bonn.de

Related research

Keywords: Bootstrap; Error Bars; Kernel smoothing; Nonparametric regression; Variability Bound;

Other versions of this item:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Qian, Junhui & Wang, Le, 2009. "Estimating Semiparametric Panel Data Models by Marginal Integration," MPRA Paper 18850, University Library of Munich, Germany.
  2. Linton, Oliver, 2002. "Edgeworth approximations for semiparametric instrumental variable estimators and test statistics," Journal of Econometrics, Elsevier, vol. 106(2), pages 325-368, February.
  3. Bissantz, Nicolai & Dümbgen, Lutz & Munk, Axel & Stratmann, Bernd, 2008. "Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces," Technical Reports 2008,25, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  4. R. Fraiman & G. Pérez-Iribarren, 1996. "Nonparametric conservative bands for the trend of Gaussian AR(p) models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 5(1), pages 125-144, June.
  5. Oliver Linton & Pedro Gozalo, 1995. "Testing Additivity in Generalized Nonparametric Regression Models," Cowles Foundation Discussion Papers 1106, Cowles Foundation for Research in Economics, Yale University.
  6. Paul Hall & Joel Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bon:bonsfa:227. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (BGSE Office).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.