IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/508.html
   My bibliography  Save this paper

A non convex singular stochastic control problem and its related optimal stopping boundaries

Author

Listed:
  • de Angelis, Tiziano

    (Center for Mathematical Economics, Bielefeld University)

  • Ferrari, Giorgio

    (Center for Mathematical Economics, Bielefeld University)

  • Moriarty, John

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We show that the equivalence between certain problems of singular stochastic control (SSC) and related questions of optimal stopping known for convex performance criteria (see, for example, Karatzas and Shreve (1984)) continues to hold in a non convex problem provided a related discretionary stopping time is introduced. Our problem is one of storage and consumption for electricity, a partially storable commodity with both positive and negative prices in some markets, and has similarities to the finite fuel monotone follower problem. In particular we consider a non convex infinite time horizon SSC problem whose state consists of an uncontrolled diffusion representing a real-valued commodity price, and a controlled increasing bounded process representing an inventory. We analyse the geometry of the action and inaction regions by characterising the related optimal stopping boundaries.

Suggested Citation

  • de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "A non convex singular stochastic control problem and its related optimal stopping boundaries," Center for Mathematical Economics Working Papers 508, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:508
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2901528/2902029
    File Function: First Version, 2014
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Jeanblanc, Monique & Martellini, Lionel, 2008. "Optimal investment decisions when time-horizon is uncertain," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1100-1113, December.
    2. Helyette Geman & A. Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," Post-Print halshs-00144198, HAL.
    3. Giorgio Ferrari, 2012. "On an integral equation for the free-boundary of stochastic, irreversible investment problems," Papers 1211.0412, arXiv.org, revised Jan 2015.
    4. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    5. Pindyck, Robert S, 1988. "Irreversible Investment, Capacity Choice, and the Value of the Firm," American Economic Review, American Economic Association, vol. 78(5), pages 969-985, December.
    6. repec:dau:papers:123456789/1433 is not listed on IDEAS
    7. Hélyette Geman & Andrea Roncoroni, 2006. "Understanding the Fine Structure of Electricity Prices," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1225-1262, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico, Salvatore & Ferrari, Giorgio & Schuhmann, Patrick, 2019. "A Model for the Optimal Management of Inflation," Center for Mathematical Economics Working Papers 624, Center for Mathematical Economics, Bielefeld University.
    2. Salvatore Federico & Giorgio Ferrari & Patrick Schuhmann, 2019. "A Model for the Optimal Management of Inflation," Department of Economics University of Siena 812, Department of Economics, University of Siena.
    3. Ferrari, Giorgio & Yang, Shuzhen, 2016. "On an optimal extraction problem with regime switching," Center for Mathematical Economics Working Papers 562, Center for Mathematical Economics, Bielefeld University.
    4. Tiziano De Angelis & Erik Ekstrom, 2016. "The dividend problem with a finite horizon," Papers 1609.01655, arXiv.org, revised Nov 2017.
    5. de Angelis, Tiziano & Ferrari, Giorgio & Martyr, Randall & Moriarty, John, 2016. "Optimal entry to an irreversible investment plan with non convex costs," Center for Mathematical Economics Working Papers 566, Center for Mathematical Economics, Bielefeld University.
    6. Giorgio Ferrari & Shuzhen Yang, 2016. "On an Optimal Extraction Problem with Regime Switching," Papers 1602.06765, arXiv.org, revised Dec 2017.
    7. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "A solvable two-dimensional degenerate singular stochastic control problem with non convex costs," Center for Mathematical Economics Working Papers 531, Center for Mathematical Economics, Bielefeld University.
    8. de Angelis, Tiziano & Ferrari, Giorgio & Moriarty, John, 2016. "A solvable two-dimensional singular stochastic control problem with non convex costs," Center for Mathematical Economics Working Papers 561, Center for Mathematical Economics, Bielefeld University.
    9. de Angelis, Tiziano & Ferrari, Giorgio, 2016. "Stochastic nonzero-sum games: a new connection between singular control and optimal stopping," Center for Mathematical Economics Working Papers 565, Center for Mathematical Economics, Bielefeld University.
    10. Tiziano De Angelis & Giorgio Ferrari & John Moriarty, 2019. "A Solvable Two-Dimensional Degenerate Singular Stochastic Control Problem with Nonconvex Costs," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 512-531, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koch, Torben & Vargiolu, Tiziano, 2019. "Optimal Installation of Solar Panels with Price Impact: a Solvable Singular Stochastic Control Problem," Center for Mathematical Economics Working Papers 627, Center for Mathematical Economics, Bielefeld University.
    2. Giorgio Ferrari & Hanwu Li & Frank Riedel, 2020. "A Knightian Irreversible Investment Problem," Papers 2003.14359, arXiv.org, revised Apr 2020.
    3. Ferrari, Giorgio & Salminen, Paavo, 2016. "Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary," Center for Mathematical Economics Working Papers 530, Center for Mathematical Economics, Bielefeld University.
    4. De Angelis, Tiziano & Ferrari, Giorgio, 2014. "A stochastic partially reversible investment problem on a finite time-horizon: Free-boundary analysis," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4080-4119.
    5. Chiarolla, Maria B. & Ferrari, Giorgio & Stabile, Gabriele, 2015. "Optimal dynamic procurement policies for a storable commodity with Lévy prices and convex holding costs," European Journal of Operational Research, Elsevier, vol. 247(3), pages 847-858.
    6. de Angelis, Tiziano & Ferrari, Giorgio & Martyr, Randall & Moriarty, John, 2016. "Optimal entry to an irreversible investment plan with non convex costs," Center for Mathematical Economics Working Papers 566, Center for Mathematical Economics, Bielefeld University.
    7. Fan, Ying & Zhu, Lei, 2010. "A real options based model and its application to China's overseas oil investment decisions," Energy Economics, Elsevier, vol. 32(3), pages 627-637, May.
    8. Niu, Shilei & Insley, Margaret, 2016. "An options pricing approach to ramping rate restrictions at hydro power plants," Journal of Economic Dynamics and Control, Elsevier, vol. 63(C), pages 25-52.
    9. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
    10. Giorgio Ferrari & Paavo Salminen, 2014. "Irreversible Investment under L\'evy Uncertainty: an Equation for the Optimal Boundary," Papers 1411.2395, arXiv.org.
    11. Kostas Andriosopoulos & Nikos Nomikos, 2012. "Risk management in the energy markets and Value-at-Risk modelling: a Hybrid approach," RSCAS Working Papers 2012/47, European University Institute.
    12. Jaewon Jung, 2023. "Multinational Firms and Economic Integration: The Role of Global Uncertainty," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    13. Alain Monfort & Olivier Féron, 2012. "Joint econometric modeling of spot electricity prices, forwards and options," Review of Derivatives Research, Springer, vol. 15(3), pages 217-256, October.
    14. Agliardi, Rossella, 2006. "Options to expand: Some remarks," Finance Research Letters, Elsevier, vol. 3(1), pages 65-72, March.
    15. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    16. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    17. Miao, Jianjun & Wang, Neng, 2007. "Investment, consumption, and hedging under incomplete markets," Journal of Financial Economics, Elsevier, vol. 86(3), pages 608-642, December.
    18. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    19. Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
    20. Tsekrekos, Andrianos E., 2010. "The effect of mean reversion on entry and exit decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 725-742, April.

    More about this item

    Keywords

    finite-fuel singular stochastic control; optimal stopping; free-boundary; smooth- fit; Hamilton-Jacobi-Bellman equation; irreversible investment;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • D92 - Microeconomics - - Micro-Based Behavioral Economics - - - Intertemporal Firm Choice, Investment, Capacity, and Financing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.