Advanced Search
MyIDEAS: Login

Aggregating infinitely many probability measures

Contents:

Author Info

  • Frederik Herzberg

    (Center for Mathematical Economics, Bielefeld University)

Registered author(s):

    Abstract

    The problem of how to rationally aggregate probability measures occurs in particular (i) when a group of agents, each holding probabilistic beliefs, needs to rationalise a collective decision on the basis of a single ‘aggregate belief system’ and (ii) when an individual whose belief system is compatible with several (possibly infinitely many) probability measures wishes to evaluate her options on the basis of a single aggregate prior via classical expected utility theory (a psychologically plausible account of individual decisions). We investigate this problem by first recalling some negative results from preference and judgment aggregation theory which show that the aggregate of several probability measures should not be conceived as the probability measure induced by the aggregate of the corresponding expected-utility preferences. We describe how McConway’s (Journal of the American Statistical Association, vol. 76, no. 374, pp. 410–414, 1981) theory of probabilistic opinion pooling can be generalised to cover the case of the aggregation of infinite profiles of finitely additive probability measures, too; we prove the existence of aggregation functionals satisfying responsiveness axioms à la McConway plus additional desiderata even for infinite electorates. On the basis of the theory of propositional-attitude aggregation, we argue that this is the most natural aggregation theory for probability measures. Our aggregation functionals for the case of infinite electorates are neither oligarchic nor integral-based and satisfy (at least) a weak anonymity condition. The delicate set-theoretic status of integral-based aggregation functionals for infinite electorates is discussed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.imw.uni-bielefeld.de/n/upload/paper/cfa0860e83a4c3a763a7e62d825349f7.pdf
    File Function: First version, 2014
    Download Restriction: no

    Bibliographic Info

    Paper provided by Bielefeld University, Center for Mathematical Economics in its series Working Papers with number 499.

    as in new window
    Length: 20 pages
    Date of creation: Jan 2014
    Date of revision:
    Handle: RePEc:bie:wpaper:499

    Contact details of provider:
    Postal: Postfach 10 01 31, 33501 Bielefeld
    Phone: +49(0)521-106-4907
    Web page: http://www.imw.uni-bielefeld.de/
    More information through EDIRC

    Related research

    Keywords: probabilistic opinion pooling; general aggregation theory; Richard Bradley; multiple priors; Arrow’s impossibility theorem; Bayesian epistemology; society of mind; finite anonymity; ultrafilter; measure problem; non-standard analysis;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Frederik Herzberg, 2013. "Aggregation of Monotonic Bernoullian Archimedean preferences: Arrovian impossibility results," Working Papers 488, Bielefeld University, Center for Mathematical Economics.
    2. Herzberg, Frederik & Eckert, Daniel, 2012. "The model-theoretic approach to aggregation: Impossibility results for finite and infinite electorates," Mathematical Social Sciences, Elsevier, vol. 64(1), pages 41-47.
    3. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2004. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Carlo Alberto Notebooks 12, Collegio Carlo Alberto, revised 2006.
    4. Frank Riedel, 2009. "Optimal Stopping With Multiple Priors," Econometrica, Econometric Society, vol. 77(3), pages 857-908, 05.
    5. Lauwers, Luc & Van Liedekerke, Luc, 1995. "Ultraproducts and aggregation," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 217-237.
    6. Campbell, Donald E., 1990. "Intergenerational social choice without the Pareto principle," Journal of Economic Theory, Elsevier, vol. 50(2), pages 414-423, April.
    7. Frederik Herzberg & Daniel Eckert, 2010. "Impossibility results for infinite-electorate abstract aggregation rules," Working Papers 427, Bielefeld University, Center for Mathematical Economics.
    8. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    9. Christian Klamler & Daniel Eckert, 2009. "A simple ultrafilter proof for an impossibility theorem in judgment aggregation," Economics Bulletin, AccessEcon, vol. 29(1), pages 319-327.
    10. Mark Fey, 2004. "May’s Theorem with an infinite population," Social Choice and Welfare, Springer, vol. 23(2), pages 275-293, October.
    11. Hylland, Aanund & Zeckhauser, Richard J, 1979. "The Impossibility of Bayesian Group Decision Making with Separate Aggregation of Beliefs and Values," Econometrica, Econometric Society, vol. 47(6), pages 1321-36, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:499. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr. Frederik Herzberg).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.