IDEAS home Printed from https://ideas.repec.org/p/bca/bocawp/21-7.html
   My bibliography  Save this paper

Estimating Policy Functions in Payments Systems Using Reinforcement Learning

Author

Listed:
  • Pablo S. Castro
  • Ajit Desai
  • Han Du
  • Rodney Garratt
  • Francisco Rivadeneyra

Abstract

This paper uses reinforcement learning (RL) to approximate the policy rules of banks participating in a high-value payments system. The objective of the agents is to learn a policy function for the choice of amount of liquidity provided to the system at the beginning of the day. Individual choices have complex strategic effects precluding a closed form solution of the optimal policy, except in simple cases. We show that in a simplified two-agent setting, agents using reinforcement learning do learn the optimal policy that minimizes the cost of processing their individual payments. We also show that in more complex settings, both agents learn to reduce their liquidity costs. Our results show the applicability of RL to estimate best-response functions in real-world strategic games.

Suggested Citation

  • Pablo S. Castro & Ajit Desai & Han Du & Rodney Garratt & Francisco Rivadeneyra, 2021. "Estimating Policy Functions in Payments Systems Using Reinforcement Learning," Staff Working Papers 21-7, Bank of Canada.
  • Handle: RePEc:bca:bocawp:21-7
    as

    Download full text from publisher

    File URL: https://www.bankofcanada.ca/wp-content/uploads/2021/02/swp2021-7.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Galbiati, Marco & Soramäki, Kimmo, 2011. "An agent-based model of payment systems," Journal of Economic Dynamics and Control, Elsevier, vol. 35(6), pages 859-875, June.
    2. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    3. Luca Arciero & Claudia Biancotti & Leandro D'Aurizio & Claudio Impenna, 2009. "Exploring Agent-Based Methods for the Analysis of Payment Systems: A Crisis Model for StarLogo TNG," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-2.
    4. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    5. Naoki Funai, 2019. "Convergence results on stochastic adaptive learning," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 68(4), pages 907-934, November.
    6. James J. McAndrews & Samira Rajan, 2000. "The timing and funding of Fedwire funds transfers," Economic Policy Review, Federal Reserve Bank of New York, issue Jul, pages 17-32.
    7. Bulusu, Narayan & Guérin, Pierre, 2019. "What drives interbank loans? Evidence from Canada," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 427-444.
    8. Mitsuru Igami, 0. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
    9. Rodney J. Garratt, 2022. "An Application of Shapley Value Cost Allocation to Liquidity Savings Mechanisms," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1875-1888, September.
    10. Francisco Rivadeneyra & Nellie Zhang, 2020. "Liquidity Usage and Payment Delay Estimates of the New Canadian High Value Payments System," Discussion Papers 2020-9, Bank of Canada.
    11. Bech, Morten L. & Garratt, Rod, 2003. "The intraday liquidity management game," Journal of Economic Theory, Elsevier, vol. 109(2), pages 198-219, April.
    12. Drew Fudenberg & David K. Levine, 2016. "Whither Game Theory? Towards a Theory of Learning in Games," Journal of Economic Perspectives, American Economic Association, vol. 30(4), pages 151-170, Fall.
    13. Drew Fudenberg & David K Levine, 2016. "Whither Game Theory?," Levine's Working Paper Archive 786969000000001307, David K. Levine.
    14. Mitsuru Igami, 2020. "Artificial intelligence as structural estimation: Deep Blue, Bonanza, and AlphaGo," The Econometrics Journal, Royal Economic Society, vol. 23(3), pages 1-24.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Rivadeneyra & Nellie Zhang, 2022. "Payment Coordination and Liquidity Efficiency in the New Canadian Wholesale Payments System," Discussion Papers 2022-3, Bank of Canada.
    2. Hinterlang, Natascha & Tänzer, Alina, 2021. "Optimal monetary policy using reinforcement learning," Discussion Papers 51/2021, Deutsche Bundesbank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2019. "Algorithmic Pricing What Implications for Competition Policy?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 155-171, August.
    2. Paulick, Jan & Berndsen, Ron & Diehl, Martin & Heijmans, Ronald, 2021. "No more Tears without Tiers? The Impact of Indirect Settlement on liquidity use in TARGET2," Other publications TiSEM 57477131-2199-46bf-a2f1-5, Tilburg University, School of Economics and Management.
    3. De Caux, Robert & Brede, Markus & McGroarty, Frank, 2016. "Payment prioritisation and liquidity risk in collateralised interbank payment systems," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 139-150.
    4. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    5. Shaun Byck & Ronald Heijmans, 2020. "How much liquidity would a liquidity-saving mechanism save if a liquidity-saving mechanism could save liquidity? A simulation approach for Canada's large-value payment system Shaun Byck," Working Papers 682, DNB.
    6. Christopher McMahon & Donald McGillivray & Ajit Desai & Francisco Rivadeneyra & Jean-Paul Lam & Thomas Lo & Danica Marsden & Vladimir Skavysh, 2022. "Improving the Efficiency of Payments Systems Using Quantum Computing," Staff Working Papers 22-53, Bank of Canada.
    7. Office of Financial Research (ed.), 2012. "Office of Financial Research 2012 Annual Report," Reports, Office of Financial Research, US Department of the Treasury, number 12-1.
    8. Alexander Kroeger & James J. McAndrews, 2016. "The payment system benefits of high reserve balances," Staff Reports 779, Federal Reserve Bank of New York.
    9. Klaus Abbink & Ronald Bosman & Ronald Heijmans & Frans van Winden, 2017. "Disruptions in Large-Value Payment Systems: An Experimental Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 13(4), pages 63-95, December.
    10. Thomas M. Eisenbach & Anna Kovner & Michael Junho Lee, 2022. "When It Rains, It Pours: Cyber Risk and Financial Conditions," Staff Reports 1022, Federal Reserve Bank of New York.
    11. Huberto M. Ennis & John A. Weinberg, 2007. "Interest on reserves and daylight credit," Economic Quarterly, Federal Reserve Bank of Richmond, vol. 93(Spr), pages 111-142.
    12. Morten L. Bech & Rodney J. Garratt, 2012. "Illiquidity in the Interbank Payment System Following Wide‐Scale Disruptions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(5), pages 903-929, August.
    13. Irenaeus Wolff & Dominik Bauer, 2018. "Elusive Beliefs: Why Uncertainty Leads to Stochastic Choice and Errors," TWI Research Paper Series 111, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
    14. Cason, Timothy N. & Mui, Vai-Lam, 2019. "Individual versus group choices of repeated game strategies: A strategy method approach," Games and Economic Behavior, Elsevier, vol. 114(C), pages 128-145.
    15. Merrouche, Ouarda & Schanz, Jochen, 2010. "Banks' intraday liquidity management during operational outages: Theory and evidence from the UK payment system," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 314-323, February.
    16. Krug, Sebastian, 2015. "The interaction between monetary and macroprudential policy: Should central banks "lean against the wind" to foster macrofinancial stability?," Economics Working Papers 2015-08, Christian-Albrechts-University of Kiel, Department of Economics.
    17. Funai, Naoki, 2022. "Reinforcement learning with foregone payoff information in normal form games," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 638-660.
    18. Krug, Sebastian, 2018. "The interaction between monetary and macroprudential policy: Should central banks 'lean against the wind' to foster macro-financial stability?," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-69.
    19. Joaquin Bernal & Freddy Cepeda L. & Fabio Ortega C., 2011. "Cuantificación de la contribución de las fuentes de liquidez en el Sistema de Pagos de Alto Valor en Colombia: una aproximación preliminar," Borradores de Economia 683, Banco de la Republica de Colombia.
    20. Leinonen, Harry & Soramäki, Kimmo, 2003. "Simulating interbank payments and securities settlement mechanism with the BoF-PSS2 simulator," Bank of Finland Research Discussion Papers 23/2003, Bank of Finland.

    More about this item

    Keywords

    Digital currencies and fintech; Financial institutions; Financial system regulation and policies; Payment clearing and settlement systems;
    All these keywords.

    JEL classification:

    • A12 - General Economics and Teaching - - General Economics - - - Relation of Economics to Other Disciplines
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E42 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Monetary Sytsems; Standards; Regimes; Government and the Monetary System
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bca:bocawp:21-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bocgvca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.