IDEAS home Printed from https://ideas.repec.org/p/bbk/bbkefp/0611.html
   My bibliography  Save this paper

Pricing Forward Contracts in Power Markets by the Certainty Equivalence Principle: Explaining the Sign of the Market Risk Premium

Author

Listed:
  • Fred Espen Benth
  • Alvaro Cartea

    (Department of Economics, Mathematics & Statistics, Birkbeck)

  • Ruediger Kiesel

Abstract

In this paper we provide a framework that explains how the market risk premium, defined as the difference between forward prices and spot forecasts, depends on the risk preferences of market players. In commodities markets this premium is an important indicator of the behaviour of buyers and sellers and their views on the market spanning between short-term and long-term horizons. We show that under certain assumptions it is possible to derive explicit solutions that link levels of risk aversion and market power with market prices of risk and the market risk premium.

Suggested Citation

  • Fred Espen Benth & Alvaro Cartea & Ruediger Kiesel, 2006. "Pricing Forward Contracts in Power Markets by the Certainty Equivalence Principle: Explaining the Sign of the Market Risk Premium," Birkbeck Working Papers in Economics and Finance 0611, Birkbeck, Department of Economics, Mathematics & Statistics.
  • Handle: RePEc:bbk:bbkefp:0611
    as

    Download full text from publisher

    File URL: https://eprints.bbk.ac.uk/id/eprint/26932
    File Function: First version, 2006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cartea, Álvaro & Williams, Thomas, 2008. "UK gas markets: The market price of risk and applications to multiple interruptible supply contracts," Energy Economics, Elsevier, vol. 30(3), pages 829-846, May.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Alvaro Cartea & Marcelo Figueroa, 2005. "Pricing in Electricity Markets: A Mean Reverting Jump Diffusion Model with Seasonality," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(4), pages 313-335.
    4. Schwartz, Eduardo S, 1997. "The Stochastic Behavior of Commodity Prices: Implications for Valuation and Hedging," Journal of Finance, American Finance Association, vol. 52(3), pages 923-973, July.
    5. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019. "Long-term swings and seasonality in energy markets," European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
    2. Shao, Chengwu & Bhar, Ramaprasad & Colwell, David B., 2015. "A multi-factor model with time-varying and seasonal risk premiums for the natural gas market," Energy Economics, Elsevier, vol. 50(C), pages 207-214.
    3. Cartea, Álvaro & González-Pedraz, Carlos, 2012. "How much should we pay for interconnecting electricity markets? A real options approach," Energy Economics, Elsevier, vol. 34(1), pages 14-30.
    4. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    5. Fred Espen Benth & Jūratė Šaltytė Benth & Steen Koekebakker, 2008. "Stochastic Modeling of Electricity and Related Markets," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6811, December.
    6. Deschatre, Thomas & Féron, Olivier & Gruet, Pierre, 2021. "A survey of electricity spot and futures price models for risk management applications," Energy Economics, Elsevier, vol. 102(C).
    7. Fiuza de Bragança, Gabriel Godofredo & Daglish, Toby, 2016. "Can market power in the electricity spot market translate into market power in the hedge market?," Energy Economics, Elsevier, vol. 58(C), pages 11-26.
    8. Marcelo G. Figueroa, 2006. "Pricing Multiple Interruptible-Swing Contracts," Birkbeck Working Papers in Economics and Finance 0606, Birkbeck, Department of Economics, Mathematics & Statistics.
    9. Luis M. Abadie & José M. Chamorro, 2009. "Monte Carlo valuation of natural gas investments," Review of Financial Economics, John Wiley & Sons, vol. 18(1), pages 10-22, January.
    10. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org.
    11. Iván Blanco, Juan Ignacio Peña, and Rosa Rodriguez, 2018. "Modelling Electricity Swaps with Stochastic Forward Premium Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    12. de Braganca, Gabriel Fiuza & Daglish, Toby, 2012. "Can market power in the electricity spot market translate into market power in the hedge market?," Working Paper Series 4130, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    13. Cartea, Álvaro & Villaplana, Pablo, 2008. "Spot price modeling and the valuation of electricity forward contracts: The role of demand and capacity," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2502-2519, December.
    14. Islyaev, Suren & Date, Paresh, 2015. "Electricity futures price models: Calibration and forecasting," European Journal of Operational Research, Elsevier, vol. 247(1), pages 144-154.
    15. Jan Seifert & Marliese Uhrig-Homburg, 2007. "Modelling jumps in electricity prices: theory and empirical evidence," Review of Derivatives Research, Springer, vol. 10(1), pages 59-85, January.
    16. Arismendi, Juan C. & Back, Janis & Prokopczuk, Marcel & Paschke, Raphael & Rudolf, Markus, 2016. "Seasonal Stochastic Volatility: Implications for the pricing of commodity options," Journal of Banking & Finance, Elsevier, vol. 66(C), pages 53-65.
    17. Schlueter, Stephan, 2010. "A long-term/short-term model for daily electricity prices with dynamic volatility," Energy Economics, Elsevier, vol. 32(5), pages 1074-1081, September.
    18. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.
    19. Latini, Luca & Piccirilli, Marco & Vargiolu, Tiziano, 2019. "Mean-reverting no-arbitrage additive models for forward curves in energy markets," Energy Economics, Elsevier, vol. 79(C), pages 157-170.
    20. Benth, Fred Espen & Kiesel, Rüdiger & Nazarova, Anna, 2012. "A critical empirical study of three electricity spot price models," Energy Economics, Elsevier, vol. 34(5), pages 1589-1616.

    More about this item

    Keywords

    Contango; backwardation; market price of risk; electricity forwards; market risk premium; forward risk premium; forward bias.;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bbk:bbkefp:0611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://www.bbk.ac.uk/departments/ems/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.