IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2010.14646.html
   My bibliography  Save this paper

McKean-Vlasov equations involving hitting times: blow-ups and global solvability

Author

Listed:
  • Erhan Bayraktar
  • Gaoyue Guo
  • Wenpin Tang
  • Yuming Zhang

Abstract

This paper is concerned with the analysis of blow-ups for two McKean-Vlasov equations involving hitting times. Let $(B(t); \, t \ge 0)$ be standard Brownian motion, and $\tau:= \inf\{t \ge 0: X(t) \le 0\}$ be the hitting time to zero of a given process $X$. The first equation is $X(t) = X(0) + B(t) - \alpha \mathbb{P}(\tau \le t)$. We provide a simple condition on $\alpha$ and the distribution of $X(0)$ such that the corresponding Fokker-Planck equation has no blow-up, and thus the McKean-Vlasov dynamics is well-defined for all time $t \ge 0$. Our approach relies on a connection between the McKean-Vlasov equation and the supercooled Stefan problem, as well as several comparison principles. The second equation is $X(t) = X(0) + \beta t + B(t) + \alpha \log \mathbb{P}(\tau > t)$, whose Fokker-Planck equation is non-local. We prove that for $\beta > 0$ sufficiently large and $\alpha$ no greater than a sufficiently small positive constant, there is no blow-up and the McKean-Vlasov dynamics is well-defined for all time $t \ge 0$. The argument is based on a new transform, which removes the non-local term, followed by a relative entropy analysis.

Suggested Citation

  • Erhan Bayraktar & Gaoyue Guo & Wenpin Tang & Yuming Zhang, 2020. "McKean-Vlasov equations involving hitting times: blow-ups and global solvability," Papers 2010.14646, arXiv.org, revised Jul 2023.
  • Handle: RePEc:arx:papers:2010.14646
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2010.14646
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Delarue, F. & Inglis, J. & Rubenthaler, S. & Tanré, E., 2015. "Particle systems with a singular mean-field self-excitation. Application to neuronal networks," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2451-2492.
    2. Christa Cuchiero & Stefan Rigger & Sara Svaluto-Ferro, 2020. "Propagation of minimality in the supercooled Stefan problem," Papers 2010.03580, arXiv.org, revised Jun 2022.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zachary Feinstein & Andreas Sojmark, 2021. "Contagious McKean-Vlasov systems with heterogeneous impact and exposure," Papers 2104.06776, arXiv.org, revised Sep 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Bayraktar & Gaoyue Guo & Wenpin Tang & Yuming Paul Zhang, 2022. "Systemic robustness: a mean-field particle system approach," Papers 2212.08518, arXiv.org, revised Aug 2023.
    2. Cormier, Quentin & Tanré, Etienne & Veltz, Romain, 2020. "Long time behavior of a mean-field model of interacting neurons," Stochastic Processes and their Applications, Elsevier, vol. 130(5), pages 2553-2595.
    3. Ben Hambly & Andreas Sojmark, 2018. "An SPDE Model for Systemic Risk with Endogenous Contagion," Papers 1801.10088, arXiv.org, revised Sep 2018.
    4. Sirignano, Justin & Spiliopoulos, Konstantinos, 2020. "Mean field analysis of neural networks: A central limit theorem," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1820-1852.
    5. Ben Hambly & Andreas Søjmark, 2019. "An SPDE model for systemic risk with endogenous contagion," Finance and Stochastics, Springer, vol. 23(3), pages 535-594, July.
    6. Kumar, Santosh & Singh, Paramjeet, 2019. "High order WENO finite volume approximation for population density neuron model," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 173-189.
    7. Zachary Feinstein & Andreas Sojmark, 2021. "Contagious McKean-Vlasov systems with heterogeneous impact and exposure," Papers 2104.06776, arXiv.org, revised Sep 2022.
    8. Chevallier, Julien, 2017. "Mean-field limit of generalized Hawkes processes," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3870-3912.
    9. Sean Ledger & Andreas Sojmark, 2018. "Uniqueness for contagious McKean--Vlasov systems in the weak feedback regime," Papers 1811.12356, arXiv.org, revised Oct 2019.
    10. Roman Gayduk & Sergey Nadtochiy, 2020. "Control-Stopping Games for Market Microstructure and Beyond," Mathematics of Operations Research, INFORMS, vol. 45(4), pages 1289-1317, November.
    11. Sean Ledger & Andreas Sojmark, 2018. "At the Mercy of the Common Noise: Blow-ups in a Conditional McKean--Vlasov Problem," Papers 1807.05126, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.14646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.