IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1605.01327.html
   My bibliography  Save this paper

No-arbitrage and hedging with liquid American options

Author

Listed:
  • Erhan Bayraktar
  • Zhou Zhou

Abstract

Since most of the traded options on individual stocks is of American type it is of interest to generalize the results obtained in semi-static trading to the case when one is allowed to statically trade American options. However, this problem has proved to be elusive so far because of the asymmetric nature of the positions of holding versus shorting such options. Here we provide a unified framework and generalize the fundamental theorem of asset pricing (FTAP) and hedging dualities in arXiv:1502.06681 (to appear in Annals of Applied Probability) to the case where the investor can also short American options. Following arXiv:1502.06681, we assume that the longed American options are divisible. As for the shorted American options, we show that the divisibility plays no role regarding arbitrage property and hedging prices. Then using the method of enlarging probability spaces proposed in arXiv:1604.05517, we convert the shorted American options to European options, and establish the FTAP and sub- and super-hedging dualities in the enlarged space both with and without model uncertainty.

Suggested Citation

  • Erhan Bayraktar & Zhou Zhou, 2016. "No-arbitrage and hedging with liquid American options," Papers 1605.01327, arXiv.org, revised Jan 2018.
  • Handle: RePEc:arx:papers:1605.01327
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1605.01327
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Erhan Bayraktar & Zhou Zhou, 2015. "Arbitrage, hedging and utility maximization using semi-static trading strategies with American options," Papers 1502.06681, arXiv.org, revised Feb 2016.
    2. Alexander M. G. Cox & Christoph Hoeggerl, 2013. "Model-independent no-arbitrage conditions on American put options," Papers 1301.5467, arXiv.org.
    3. Erhan Bayraktar & Yu-Jui Huang & Zhou Zhou, 2013. "On hedging American options under model uncertainty," Papers 1309.2982, arXiv.org, revised Apr 2015.
    4. Anna Aksamit & Shuoqing Deng & Jan Obl'oj & Xiaolu Tan, 2016. "Robust pricing--hedging duality for American options in discrete time financial markets," Papers 1604.05517, arXiv.org, revised Apr 2017.
    5. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    6. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    7. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    8. Erhan Bayraktar & Yuchong Zhang & Zhou Zhou, 2014. "A Note on the Fundamental Theorem of Asset Pricing under Model Uncertainty," Risks, MDPI, vol. 2(4), pages 1-9, October.
    9. repec:dau:papers:123456789/5710 is not listed on IDEAS
    10. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    11. Erhan Bayraktar & Zhou Zhou, 2017. "Super-Hedging American Options With Semi-Static Trading Strategies Under Model Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-10, September.
    12. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    13. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    14. Alexander M. G. Cox & Christoph Hoeggerl, 2016. "Model-Independent No-Arbitrage Conditions On American Put Options," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 431-458, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    2. Anna Aksamit & Ivan Guo & Shidan Liu & Zhou Zhou, 2021. "Superhedging duality for multi-action options under model uncertainty with information delay," Papers 2111.14502, arXiv.org, revised Nov 2023.
    3. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2018. "Time Consistent Stopping For The Mean-Standard Deviation Problem --- The Discrete Time Case," Papers 1802.08358, arXiv.org, revised Apr 2019.
    4. Tongseok Lim, 2023. "Optimal exercise decision of American options under model uncertainty," Papers 2310.14473, arXiv.org, revised Nov 2023.
    5. Erhan Bayraktar & Zhou Zhou, 2017. "Super-Hedging American Options With Semi-Static Trading Strategies Under Model Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Aksamit & Ivan Guo & Shidan Liu & Zhou Zhou, 2021. "Superhedging duality for multi-action options under model uncertainty with information delay," Papers 2111.14502, arXiv.org, revised Nov 2023.
    2. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    3. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    4. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    5. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    6. Anna Aksamit & Shuoqing Deng & Jan Obl'oj & Xiaolu Tan, 2016. "Robust pricing--hedging duality for American options in discrete time financial markets," Papers 1604.05517, arXiv.org, revised Apr 2017.
    7. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    8. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    9. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    10. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, June.
    11. Beatrice Acciaio & Mathias Beiglboeck & Gudmund Pammer, 2020. "Weak Transport for Non-Convex Costs and Model-independence in a Fixed-Income Market," Papers 2011.04274, arXiv.org, revised Aug 2023.
    12. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    13. Beatrice Acciaio & Mathias Beiglböck & Gudmund Pammer, 2021. "Weak transport for non‐convex costs and model‐independence in a fixed‐income market," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1423-1453, October.
    14. Erhan Bayraktar & Gu Wang, 2018. "Quantile Hedging in a semi-static market with model uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 197-227, April.
    15. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    16. Erhan Bayraktar & Zhou Zhou, 2015. "Arbitrage, hedging and utility maximization using semi-static trading strategies with American options," Papers 1502.06681, arXiv.org, revised Feb 2016.
    17. Miklós Rásonyi & Andrea Meireles‐Rodrigues, 2021. "On utility maximization under model uncertainty in discrete‐time markets," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 149-175, January.
    18. Beatrice Acciaio & Martin Larsson & Walter Schachermayer, 2017. "The space of outcomes of semi-static trading strategies need not be closed," Finance and Stochastics, Springer, vol. 21(3), pages 741-751, July.
    19. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    20. Erhan Bayraktar & Zhou Zhou, 2017. "Super-Hedging American Options With Semi-Static Trading Strategies Under Model Uncertainty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(06), pages 1-10, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1605.01327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.