IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1401.0462.html
   My bibliography  Save this paper

Emergence of statistically validated financial intraday lead-lag relationships

Author

Listed:
  • Chester Curme
  • Michele Tumminello
  • Rosario N. Mantegna
  • H. Eugene Stanley
  • Dror Y. Kenett

Abstract

According to the leading models in modern finance, the presence of intraday lead-lag relationships between financial assets is negligible in efficient markets. With the advance of technology, however, markets have become more sophisticated. To determine whether this has resulted in an improved market efficiency, we investigate whether statistically significant lagged correlation relationships exist in financial markets. We introduce a numerical method to statistically validate links in correlation-based networks, and employ our method to study lagged correlation networks of equity returns in financial markets. Crucially, our statistical validation of lead-lag relationships accounts for multiple hypothesis testing over all stock pairs. In an analysis of intraday transaction data from the periods 2002--2003 and 2011--2012, we find a striking growth in the networks as we increase the frequency with which we sample returns. We compute how the number of validated links and the magnitude of correlations change with increasing sampling frequency, and compare the results between the two data sets. Finally, we compare topological properties of the directed correlation-based networks from the two periods using the in-degree and out-degree distributions and an analysis of three-node motifs. Our analysis suggests a growth in both the efficiency and instability of financial markets over the past decade.

Suggested Citation

  • Chester Curme & Michele Tumminello & Rosario N. Mantegna & H. Eugene Stanley & Dror Y. Kenett, 2014. "Emergence of statistically validated financial intraday lead-lag relationships," Papers 1401.0462, arXiv.org.
  • Handle: RePEc:arx:papers:1401.0462
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1401.0462
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. G. Bonanno & F. Lillo & R. N. Mantegna, 2001. "High-frequency cross-correlation in a set of stocks," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 96-104.
    2. Pollet, Joshua M. & Wilson, Mungo, 2010. "Average correlation and stock market returns," Journal of Financial Economics, Elsevier, vol. 96(3), pages 364-380, June.
    3. de Jong, F.C.J.M. & Nijman, T.E. & Röell, A.A., 1996. "Price effects of trading and components of the bid-ask spread on the Paris Bourse," Other publications TiSEM 08f5fa19-14b7-4bc8-ba07-1, Tilburg University, School of Economics and Management.
    4. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    5. repec:dau:papers:123456789/10898 is not listed on IDEAS
    6. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    7. Gopikrishnan, P & Plerou, V & Liu, Y & Amaral, L.A.N & Gabaix, X & Stanley, H.E, 2000. "Scaling and correlation in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 362-373.
    8. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    9. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    10. Giulio Biroli & Jean-Philippe Bouchaud & Marc Potters, 2007. "The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy," Papers 0710.0802, arXiv.org.
    11. repec:pri:cepsud:91malkiel is not listed on IDEAS
    12. Kristin J. Forbes & Roberto Rigobon, 2002. "No Contagion, Only Interdependence: Measuring Stock Market Comovements," Journal of Finance, American Finance Association, vol. 57(5), pages 2223-2261, October.
    13. Dror Y Kenett & Matthias Raddant & Thomas Lux & Eshel Ben-Jacob, 2012. "Evolvement of Uniformity and Volatility in the Stressed Global Financial Village," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    14. Tumminello, Michele & Lillo, Fabrizio & Mantegna, Rosario N., 2010. "Correlation, hierarchies, and networks in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 75(1), pages 40-58, July.
    15. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    16. Dror Y Kenett & Michele Tumminello & Asaf Madi & Gitit Gur-Gershgoren & Rosario N Mantegna & Eshel Ben-Jacob, 2010. "Dominating Clasp of the Financial Sector Revealed by Partial Correlation Analysis of the Stock Market," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-14, December.
    17. Robert E. Hall, 2010. "Why Does the Economy Fall to Pieces after a Financial Crisis?," Journal of Economic Perspectives, American Economic Association, vol. 24(4), pages 3-20, Fall.
    18. Onnela, J.-P. & Chakraborti, A. & Kaski, K. & Kertész, J., 2003. "Dynamic asset trees and Black Monday," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 247-252.
    19. Christian Borghesi & Matteo Marsili & Salvatore Miccich`e, 2007. "Emergence of time-horizon invariant correlation structure in financial returns by subtraction of the market mode," Papers physics/0702106, arXiv.org.
    20. Tobin, James, 1969. "A General Equilibrium Approach to Monetary Theory," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 1(1), pages 15-29, February.
    21. Michele Tumminello & Salvatore Miccichè & Fabrizio Lillo & Jyrki Piilo & Rosario N Mantegna, 2011. "Statistically Validated Networks in Bipartite Complex Systems," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-11, March.
    22. Stephen Cecchetti & Enisse Kharroubi, 2012. "Reassessing the impact of finance on growth," BIS Working Papers 381, Bank for International Settlements.
    23. Dong-Ming Song & Michele Tumminello & Wei-Xing Zhou & Rosario N. Mantegna, 2011. "Evolution of worldwide stock markets, correlation structure and correlation based graphs," Papers 1103.5555, arXiv.org.
    24. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    25. Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Correlation structure of extreme stock returns," Papers cond-mat/0006034, arXiv.org, revised Jan 2001.
    26. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    27. de Jong, Frank & Nijman, Theo & Roell, Ailsa, 1996. "Price effects of trading and components of the bid-ask spread on the Paris Bourse," Journal of Empirical Finance, Elsevier, vol. 3(2), pages 193-213, June.
    28. P. Cizeau & M. Potters & J-P. Bouchaud, 2001. "Correlation structure of extreme stock returns," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 217-222.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandoval, Leonidas, 2014. "To lag or not to lag? How to compare indices of stock markets that operate on different times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 227-243.
    2. Tao You & Paweł Fiedor & Artur Hołda, 2015. "Network Analysis of the Shanghai Stock Exchange Based on Partial Mutual Information," JRFM, MDPI, vol. 8(2), pages 1-19, June.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    5. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2014. "Partial correlation analysis: Applications for financial markets," Papers 1402.1405, arXiv.org.
    6. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    7. Dror Y. Kenett & Xuqing Huang & Irena Vodenska & Shlomo Havlin & H. Eugene Stanley, 2015. "Partial correlation analysis: applications for financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 15(4), pages 569-578, April.
    8. M. Raddant & T. Di Matteo, 2023. "A look at financial dependencies by means of econophysics and financial economics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(4), pages 701-734, October.
    9. Sandoval, Leonidas, 2012. "Pruning a minimum spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2678-2711.
    10. Fiedor, Paweł, 2014. "Sector strength and efficiency on developed and emerging financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 180-188.
    11. Zhang, Xin & Podobnik, Boris & Kenett, Dror Y. & Eugene Stanley, H., 2014. "Systemic risk and causality dynamics of the world international shipping market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 43-53.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Sandoval, Leonidas Junior, 2013. "To lag or not to lag? How to compare indices of stock markets that operate at different times," Insper Working Papers wpe_319, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    14. Dror Kenett & Shlomo Havlin, 2015. "Network science: a useful tool in economics and finance," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 14(2), pages 155-167, November.
    15. Huang, Wei-Qiang & Yao, Shuang & Zhuang, Xin-Tian & Yuan, Ying, 2017. "Dynamic asset trees in the US stock market: Structure variation and market phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 94(C), pages 44-53.
    16. Teh, Boon Kin & Goo, Yik Wen & Lian, Tong Wei & Ong, Wei Guang & Choi, Wen Ting & Damodaran, Mridula & Cheong, Siew Ann, 2015. "The Chinese Correction of February 2007: How financial hierarchies change in a market crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 225-241.
    17. Nicoló Musmeci & Tomaso Aste & T Di Matteo, 2015. "Relation between Financial Market Structure and the Real Economy: Comparison between Clustering Methods," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-24, March.
    18. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    19. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    20. Musmeci, Nicoló & Aste, Tomaso & Di Matteo, T., 2015. "Relation between financial market structure and the real economy: comparison between clustering methods," LSE Research Online Documents on Economics 61644, London School of Economics and Political Science, LSE Library.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1401.0462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.