IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1201.3083.html
   My bibliography  Save this paper

The class of nonlinear stochastic models as a background for the bursty behavior in financial markets

Author

Listed:
  • Vygintas Gontis
  • Aleksejus Kononovicius
  • Stefan Reimann

Abstract

We investigate large changes, bursts, of the continuous stochastic signals, when the exponent of multiplicativity is higher than one. Earlier we have proposed a general nonlinear stochastic model which can be transformed into Bessel process with known first hitting (first passage) time statistics. Using these results we derive PDF of burst duration for the proposed model. We confirm analytical expressions by numerical evaluation and discuss bursty behavior of return in financial markets in the framework of modeling by nonlinear SDE.

Suggested Citation

  • Vygintas Gontis & Aleksejus Kononovicius & Stefan Reimann, 2012. "The class of nonlinear stochastic models as a background for the bursty behavior in financial markets," Papers 1201.3083, arXiv.org, revised May 2012.
  • Handle: RePEc:arx:papers:1201.3083
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1201.3083
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Vygintas Gontis & Bronislovas Kaulakys, 2003. "Multiplicative point process as a model of trading activity," Papers cond-mat/0303089, arXiv.org, revised Dec 2004.
    3. Alan Kirman, 1993. "Ants, Rationality, and Recruitment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(1), pages 137-156.
    4. Kononovicius, A. & Gontis, V., 2012. "Agent based reasoning for the non-linear stochastic models of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1309-1314.
    5. Reimann, St. & Gontis, V. & Alaburda, M., 2011. "Interplay between positive feedbacks in the generalized CEV process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(8), pages 1393-1401.
    6. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    7. Dmitry Davydov & Vadim Linetsky, 2001. "Pricing and Hedging Path-Dependent Options Under the CEV Process," Management Science, INFORMS, vol. 47(7), pages 949-965, July.
    8. Gontis, V. & Kaulakys, B., 2004. "Multiplicative point process as a model of trading activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 505-514.
    9. Kaulakys, Bronislovas & Ruseckas, Julius & Gontis, Vygintas & Alaburda, Miglius, 2006. "Nonlinear stochastic models of 1/f noise and power-law distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(1), pages 217-221.
    10. Simone Alfarano & Thomas Lux & Friedrich Wagner, 2005. "Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model," Computational Economics, Springer;Society for Computational Economics, vol. 26(1), pages 19-49, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vygintas Gontis, 2021. "Order flow in the financial markets from the perspective of the Fractional L\'evy stable motion," Papers 2105.02057, arXiv.org, revised Nov 2021.
    2. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    3. Gontis, V. & Kononovicius, A., 2020. "Bessel-like birth–death process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Rytis Kazakeviv{c}ius & Aleksejus Kononovicius, 2023. "Anomalous diffusion and long-range memory in the scaled voter model," Papers 2301.08088, arXiv.org, revised Feb 2023.
    5. Kononovicius, A. & Ruseckas, J., 2015. "Nonlinear GARCH model and 1/f noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 74-81.
    6. Gontis, V. & Kononovicius, A., 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 266-272.
    7. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    8. Aleksejus Kononovicius & Vygintas Gontis, 2019. "Approximation of the first passage time distribution for the birth-death processes," Papers 1902.00924, arXiv.org.
    9. Aleksejus Kononovicius & Julius Ruseckas, 2014. "Nonlinear GARCH model and 1/f noise," Papers 1412.6244, arXiv.org, revised Feb 2015.
    10. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    11. Vygintas Gontis & Aleksejus Kononovicius, 2019. "Bessel-like birth-death process," Papers 1904.13064, arXiv.org, revised Oct 2019.
    12. Vygintas Gontis & Aleksejus Kononovicius, 2017. "The consentaneous model of the financial markets exhibiting spurious nature of long-range memory," Papers 1712.05121, arXiv.org, revised Feb 2018.
    13. Gontis, V. & Kononovicius, A., 2018. "The consentaneous model of the financial markets exhibiting spurious nature of long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1075-1083.
    14. Vygintas Gontis & Aleksejus Kononovicius, 2017. "Spurious memory in non-equilibrium stochastic models of imitative behavior," Papers 1707.09801, arXiv.org.
    15. V. Gontis & A. Kononovicius, 2017. "Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets," Papers 1701.01255, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksejus Kononovicius & Vygintas Gontis & Valentas Daniunas, 2012. "Agent-based Versus Macroscopic Modeling of Competition and Business Processes in Economics and Finance," Papers 1202.3533, arXiv.org, revised Jun 2012.
    2. Aleksejus Kononovicius & Vygintas Gontis, 2012. "Three-state herding model of the financial markets," Papers 1210.1838, arXiv.org, revised Jan 2013.
    3. Rytis Kazakevicius & Aleksejus Kononovicius & Bronislovas Kaulakys & Vygintas Gontis, 2021. "Understanding the nature of the long-range memory phenomenon in socioeconomic systems," Papers 2108.02506, arXiv.org, revised Aug 2021.
    4. Kononovicius, Aleksejus & Kazakevičius, Rytis & Kaulakys, Bronislovas, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Aleksejus Kononovicius & Rytis Kazakeviv{c}ius & Bronislovas Kaulakys, 2022. "Resemblance of the power-law scaling behavior of a non-Markovian and nonlinear point processes," Papers 2205.07563, arXiv.org, revised Jul 2022.
    6. Gontis, V. & Havlin, S. & Kononovicius, A. & Podobnik, B. & Stanley, H.E., 2016. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1091-1102.
    7. Aleksejus Kononovicius, 2017. "Empirical Analysis and Agent-Based Modeling of the Lithuanian Parliamentary Elections," Complexity, Hindawi, vol. 2017, pages 1-15, November.
    8. Aleksejus Kononovicius & Julius Ruseckas, 2018. "Order book model with herd behavior exhibiting long-range memory," Papers 1809.02772, arXiv.org, revised Apr 2019.
    9. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.
    10. Adrián Carro & Raúl Toral & Maxi San Miguel, 2015. "Markets, Herding and Response to External Information," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-28, July.
    11. Aleksejus Kononovicius & Vygintas Gontis, 2014. "Herding interactions as an opportunity to prevent extreme events in financial markets," Papers 1409.8024, arXiv.org, revised May 2015.
    12. Kononovicius, Aleksejus & Ruseckas, Julius, 2019. "Order book model with herd behavior exhibiting long-range memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 171-191.
    13. Vygintas Gontis & Shlomo Havlin & Aleksejus Kononovicius & Boris Podobnik & H. Eugene Stanley, 2015. "Stochastic model of financial markets reproducing scaling and memory in volatility return intervals," Papers 1507.05203, arXiv.org, revised Oct 2016.
    14. Kononovicius, A. & Gontis, V., 2014. "Control of the socio-economic systems using herding interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 80-84.
    15. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2013. "Signal amplification in an agent-based herding model," Papers 1302.6477, arXiv.org, revised Sep 2015.
    16. Aleksejus Kononovicius & Vygintas Gontis, 2013. "Control of the socio-economic systems using herding interactions," Papers 1309.6105, arXiv.org, revised Feb 2014.
    17. David Vidal-Tomás & Simone Alfarano, 2020. "An agent-based early warning indicator for financial market instability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 15(1), pages 49-87, January.
    18. Peralta, Antonio F. & Khalil, Nagi & Toral, Raúl, 2020. "Ordering dynamics in the voter model with aging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 552(C).
    19. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    20. Kononovicius, Aleksejus, 2021. "Supportive interactions in the noisy voter model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.3083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.