Advanced Search
MyIDEAS: Login

Sensitivity of the Performance of a Simple Exchange Model to its Topology

Contents:

Author Info

  • Vitus J. Leung
  • Randall A. LaViolette
Registered author(s):

    Abstract

    We study a simple exchange model in which price is fixed and the amount of a good transferred between actors depends only on the actors' respective budgets and the existence of a link between transacting actors. The model induces a simply-connected but possibly multi-component bipartite graph. A trading session on a fixed graph consists of a sequence of exchanges between connected buyers and sellers until no more exchanges are possible. We deem a trading session "feasible" if all of the buyers satisfy their respective demands. If all trading sessions are feasible the graph is deemed "successful", otherwise the feasibility of a trading session depends on the order of the sequence of exchanges. We demonstrate that topology is important for the success of trading sessions on graphs. In particular, for the case that supply equals demand for each component of the graph, we prove that the graph is successful if and only if the graph consists of components each of which are complete bipartite. For the case that supply exceeds demand, we prove that the other topologies also can be made successful but with finite reserve (i.e., excess supply) requirements that may grow proportional to the number of buyers. Finally, with computations for a small instance of the model, we provide an example of the wide range of performance in which only the connectivity varies. These results taken together place limits on the improvements in performance that can be expected from proposals to increase the connectivity of sparse exchange networks.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1002.4641
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1002.4641.

    as in new window
    Length:
    Date of creation: Feb 2010
    Date of revision:
    Handle: RePEc:arx:papers:1002.4641

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1002.4641. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.