IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1001.3003.html
   My bibliography  Save this paper

On refined volatility smile expansion in the Heston model

Author

Listed:
  • P. Friz
  • S. Gerhold
  • A. Gulisashvili
  • S. Sturm

Abstract

It is known that Heston's stochastic volatility model exhibits moment explosion, and that the critical moment $s_+$ can be obtained by solving (numerically) a simple equation. This yields a leading order expansion for the implied volatility at large strikes: $\sigma_{BS}( k,T)^{2}T\sim \Psi (s_+-1) \times k$ (Roger Lee's moment formula). Motivated by recent "tail-wing" refinements of this moment formula, we first derive a novel tail expansion for the Heston density, sharpening previous work of Dragulescu and Yakovenko [Quant. Finance 2, 6 (2002), 443--453], and then show the validity of a refined expansion of the type $\sigma_{BS}( k,T) ^{2}T=( \beta_{1}k^{1/2}+\beta_{2}+...)^{2}$, where all constants are explicitly known as functions of $s_+$, the Heston model parameters, spot vol and maturity $T$. In the case of the "zero-correlation" Heston model such an expansion was derived by Gulisashvili and Stein [Appl. Math. Optim. 61, 3 (2010), 287--315]. Our methods and results may prove useful beyond the Heston model: the entire quantitative analysis is based on affine principles: at no point do we need knowledge of the (explicit, but cumbersome) closed form expression of the Fourier transform of $\log S_{T}$\ (equivalently: Mellin transform of $S_{T}$ ); what matters is that these transforms satisfy ordinary differential equations of Riccati type. Secondly, our analysis reveals a new parameter ("critical slope"), defined in a model free manner, which drives the second and higher order terms in tail- and implied volatility expansions.

Suggested Citation

  • P. Friz & S. Gerhold & A. Gulisashvili & S. Sturm, 2010. "On refined volatility smile expansion in the Heston model," Papers 1001.3003, arXiv.org, revised Nov 2010.
  • Handle: RePEc:arx:papers:1001.3003
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1001.3003
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Vladimir Piterbarg, 2007. "Moment explosions in stochastic volatility models," Finance and Stochastics, Springer, vol. 11(1), pages 29-50, January.
    2. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    3. Martin Forde & Antoine Jacquier & Aleksandar Mijatovic, 2009. "Asymptotic formulae for implied volatility in the Heston model," Papers 0911.2992, arXiv.org, revised May 2010.
    4. S. Benaim & P. Friz, 2009. "Regular Variation And Smile Asymptotics," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 1-12, January.
    5. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392, arXiv.org.
    6. A. Gulisashvili, 2009. "Asymptotic Formulas with Error Estimates for Call Pricing Functions and the Implied Volatility at Extreme Strikes," Papers 0906.0394, arXiv.org.
    7. Roger W. Lee, 2004. "The Moment Formula For Implied Volatility At Extreme Strikes," Mathematical Finance, Wiley Blackwell, vol. 14(3), pages 469-480, July.
    8. Ingo Fahrner, 2007. "Modern Logarithms For The Heston Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 23-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Mario Dell’Era, 2014. "Closed Form Solution for Heston PDE By Geometrical Transformations," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 4(6), pages 793-807, June.
    3. Antoine Jacquier & Patrick Roome, 2013. "The Small-Maturity Heston Forward Smile," Papers 1303.4268, arXiv.org, revised Aug 2013.
    4. Cristian Homescu, 2011. "Implied Volatility Surface: Construction Methodologies and Characteristics," Papers 1107.1834, arXiv.org.
    5. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    6. Philip Stahl, 2022. "Asymptotic extrapolation of model-free implied variance: exploring structural underestimation in the VIX Index," Review of Derivatives Research, Springer, vol. 25(3), pages 315-339, October.
    7. Francesco Caravenna & Jacopo Corbetta, 2014. "General smile asymptotics with bounded maturity," Papers 1411.1624, arXiv.org, revised Jul 2016.
    8. Leif Andersen & Alexander Lipton, 2012. "Asymptotics for Exponential Levy Processes and their Volatility Smile: Survey and New Results," Papers 1206.6787, arXiv.org.
    9. del Baño Rollin, Sebastian & Ferreiro-Castilla, Albert & Utzet, Frederic, 2010. "On the density of log-spot in the Heston volatility model," Stochastic Processes and their Applications, Elsevier, vol. 120(10), pages 2037-2063, September.
    10. Archil Gulisashvili & Elias M. Stein, 2009. "Implied Volatility In The Hull–White Model," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 303-327, April.
    11. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    12. A. Gulisashvili & E. M. Stein, 2009. "Asymptotic Behavior of the Stock Price Distribution Density and Implied Volatility in Stochastic Volatility Models," Papers 0906.0392, arXiv.org.
    13. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    14. Francesco Caravenna & Jacopo Corbetta, 2015. "The asymptotic smile of a multiscaling stochastic volatility model," Papers 1501.03387, arXiv.org, revised Jul 2017.
    15. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    16. Kun Gao & Roger Lee, 2014. "Asymptotics of implied volatility to arbitrary order," Finance and Stochastics, Springer, vol. 18(2), pages 349-392, April.
    17. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    18. Caravenna, Francesco & Corbetta, Jacopo, 2018. "The asymptotic smile of a multiscaling stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1034-1071.
    19. Martin Keller-Ressel, 2008. "Moment Explosions and Long-Term Behavior of Affine Stochastic Volatility Models," Papers 0802.1823, arXiv.org, revised Oct 2008.
    20. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1001.3003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.