Advanced Search
MyIDEAS: Login

Addressing the bias in Monte Carlo pricing of multi-asset options with multiple barriers through discrete sampling

Contents:

Author Info

  • P. V. Shevchenko
Registered author(s):

    Abstract

    An efficient conditioning technique, the so-called Brownian Bridge simulation, has previously been applied to eliminate pricing bias that arises in applications of the standard discrete-time Monte Carlo method to evaluate options written on the continuous-time extrema of an underlying asset. It is based on the simple and easy to implement analytic formulas for the distribution of one-dimensional Brownian Bridge extremes. This paper extends the technique to the valuation of multi-asset options with knock-out barriers imposed for all or some of the underlying assets. We derive formula for the unbiased option price estimator based on the joint distribution of the multi-dimensional Brownian Bridge dependent extrema. As analytic formulas are not available for the joint distribution in general, we develop upper and lower biased option price estimators based on the distribution of independent extrema and the Fr\'echet lower and upper bounds for the unknown distribution. All estimators are simple and easy to implement. They can always be used to bind the true value by a confidence interval. Numerical tests indicate that our biased estimators converge rapidly to the true option value as the number of time steps for the asset path simulation increases in comparison to the estimator based on the standard discrete-time method. The convergence rate depends on the correlation and barrier structures of the underlying assets.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/0904.1157
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 0904.1157.

    as in new window
    Length:
    Date of creation: Apr 2009
    Date of revision:
    Publication status: Published in The Journal of Computational Finance 6(3), pp.1-20, 2003. www.journalofcomputationalfinance.com
    Handle: RePEc:arx:papers:0904.1157

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0904.1157. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.