Advanced Search
MyIDEAS: Login to save this paper or follow this series

Efficient Pricing of CPPI using Markov Operators

Contents:

Author Info

  • Louis Paulot
  • Xavier Lacroze
Registered author(s):

    Abstract

    Constant Proportion Portfolio Insurance (CPPI) is a strategy designed to give participation in a risky asset while protecting the invested capital. Some gap risk due to extreme events is often kept by the issuer of the product: a put option on the CPPI strategy is included in the product. In this paper we present a new method for the pricing of CPPIs and options on CPPIs, which is much faster and more accurate than the usual Monte-Carlo method. Provided the underlying follows a homogeneous process, the path-dependent CPPI strategy is reformulated into a Markov process in one variable, which allows to use efficient linear algebra techniques. Tail events, which are crucial in the pricing are handled smoothly. We incorporate in this framework linear thresholds, profit lock-in, performance coupons... The American exercise of open-ended CPPIs is handled naturally through backward propagation. Finally we use our pricing scheme to study the influence of various features on the gap risk of CPPI strategies.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/0901.1218
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 0901.1218.

    as in new window
    Length:
    Date of creation: Jan 2009
    Date of revision:
    Handle: RePEc:arx:papers:0901.1218

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. P. Bertrand & J.L. Prigent, 2000. "Portfolio Insurance : The extreme Value of the CCPI Method," THEMA Working Papers 2000-49, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Albanese, Claudio, 2006. "Operator Methods, Abelian Processes And Dynamic Conditioning," MPRA Paper 5246, University Library of Munich, Germany, revised 06 Nov 2007.
    3. S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, INFORMS, vol. 48(8), pages 1086-1101, August.
    4. Rama Cont & Peter Tankov, 2007. "Constant Proportion Portfolio Insurance in presence of Jumps in Asset Prices," Working Papers hal-00129413, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Zieling, Daniel & Mahayni, Antje & Balder, Sven, 2014. "Performance evaluation of optimized portfolio insurance strategies," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 212-225.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:0901.1218. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.