Advanced Search
MyIDEAS: Login to save this paper or follow this series

“A multivariate neural network approach to tourism demand forecasting”

Contents:

Author Info

  • Oscar Claveria

    ()
    (Faculty of Economics, University of Barcelona)

  • Enric Monte

    ()
    (Department of Signal Theory and Communications, Polytechnic University of Catalunya)

  • Salvador Torra

    ()
    (Faculty of Economics, University of Barcelona)

Abstract

This study compares the performance of different Artificial Neural Networks models for tourist demand forecasting in a multiple-output framework. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron network, a radial basis function network and an Elman neural network. We use official statistical data of inbound international tourism demand to Catalonia (Spain) from 2001 to 2012. By means of cointegration analysis we find that growth rates of tourist arrivals from all different countries share a common stochastic trend, which leads us to apply a multivariate out-of-sample forecasting comparison. When comparing the forecasting accuracy of the different techniques for each visitor market and for different forecasting horizons, we find that radial basis function models outperform multi-layer perceptron and Elman networks. We repeat the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the effect of the memory on the forecasting results, and we find no significant differences when additional lags are incorporated. These results reveal the suitability of hybrid models such as radial basis functions that combine supervised and unsupervised learning for economic forecasting with seasonal data.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.ub.edu/irea/working_papers/2014/201417.pdf
Download Restriction: no

Bibliographic Info

Paper provided by University of Barcelona, Regional Quantitative Analysis Group in its series AQR Working Papers with number 201410.

as in new window
Length: 21 pages
Date of creation: May 2014
Date of revision: May 2014
Handle: RePEc:aqr:wpaper:201410

Contact details of provider:
Postal: Torre IV, Av. Diagonal 690, 08034 Barcelona
Phone: 934021824
Fax: 934021821
Email:
Web page: http://www.ub.edu/aqr/
More information through EDIRC

Related research

Keywords: forecasting; tourism demand; cointegration; multiple-output; artificial neural networks. JEL classification: L83; C53; C45; R11;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mackinnon, J.G. & Haug, A.A. & Michelis, L., 1996. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," G.R.E.Q.A.M. 96a09, Universite Aix-Marseille III.
  2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  3. De Gooijer, Jan G. & Kumar, Kuldeep, 1992. "Some recent developments in non-linear time series modelling, testing, and forecasting," International Journal of Forecasting, Elsevier, vol. 8(2), pages 135-156, October.
  4. Gary Madden & Joachim Tan, 2008. "Forecasting international bandwidth capacity using linear and ANN methods," Applied Economics, Taylor & Francis Journals, vol. 40(14), pages 1775-1787.
  5. Daniel Santin & Francisco Delgado & Aurelia Valino, 2004. "The measurement of technical efficiency: a neural network approach," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 627-635.
  6. Koon Nam Lee, 2011. "Forecasting long-haul tourism demand for Hong Kong using error correction models," Applied Economics, Taylor & Francis Journals, vol. 43(5), pages 527-549.
  7. Jacint Balaguer & Manuel Cantavella-Jorda, 2002. "Tourism as a long-run economic growth factor: the Spanish case," Applied Economics, Taylor & Francis Journals, vol. 34(7), pages 877-884.
  8. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
  9. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
  10. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  11. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
  12. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-80, November.
  13. Nikolaos Vlastakis & George Dotsis & Raphael Markellos, 2008. "Nonlinear modelling of European football scores using support vector machines," Applied Economics, Taylor & Francis Journals, vol. 40(1), pages 111-118.
  14. Yair Eilat & Liran Einav, 2004. "Determinants of international tourism: a three-dimensional panel data analysis," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1315-1327.
  15. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207, September.
  16. Zhang, G. Peter & Qi, Min, 2005. "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, Elsevier, vol. 160(2), pages 501-514, January.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aqr:wpaper:201410. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibiana Barnadas).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.