Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Distribution-Based Method For Evaluating Multiscaling In Finance

Contents:

Author Info

  • Sergio Bianchi

    (University of Cassino)

Abstract

An increasing attention is being payed to the scaling behaviour of stock returns. Several reasons motivate this interest: the assumption of self-affinity is implicit both in the standard financial theory (which states that the self-affinity parameter H equals 1/2) and in less consolidate frameworks, such as the fractal gaussian models (for whom H belongs to the interval (0,1)). The scaling structure of prices is usually deduced by analysing the sample moments, but this approach could be misleading because of many reasons, the most ''embarassing'' one being the assumption of existence of the considered moments. Since self-affinity allows to distinguish between two large classes of processes (the fractal - uniscaling - ones and the multifractal - multiscaling - ones), both suggested as models in finance, we reformulate this notion by means of an equivalent definition based on a distance built on the set of the rescaled probability distribution functions generated by the scaling law which defines the notion of self-affinity itself. A general characterization of our measure provides two necessary conditions of self-affinity: monotonicity with respect to both the parameter H and the maximum lag of an increasing sequence of trading horizon sets. We also give the closed expression of our measure when the process is the fractional brownian motion. Furthermore, a proper choice of the metric allows to apply the well-known Kolmogorov-Smirnov goodness of fit test in order to evaluate the statistical significance of the self-affinity measure, also in the case of dependent data whenever uniscaling holds. Finally, an empirical analysis is performed on several market indices. The analysis shows that, for the considered horizons (from one up to fifty trading days), uniscaling does not generally hold in financial markets.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance in its series CeNDEF Workshop Papers, January 2001 with number 4A.3.

as in new window
Length:
Date of creation: 04 Jan 2001
Date of revision:
Handle: RePEc:ams:cdws01:4a.3

Contact details of provider:
Postal: Dept. of Economics and Econometrics, Universiteit van Amsterdam, Roetersstraat 11, NL - 1018 WB Amsterdam, The Netherlands
Phone: + 31 20 525 52 58
Fax: + 31 20 525 52 83
Email:
Web page: http://www.fee.uva.nl/cendef/
More information through EDIRC

Related research

Keywords: self-affinity; (uni-)(multi-)scaling; Kolmogorov-Smirnov statistics.;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ams:cdws01:4a.3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.