IDEAS home Printed from https://ideas.repec.org/p/ags/mttfdp/49896.html
   My bibliography  Save this paper

An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea

Author

Listed:
  • Hyytiainen, Kari
  • Ahtiainen, Heini
  • Heikkila, Jaakko
  • Helin, Janne
  • Huhtala, Anni
  • Iho, Antti
  • Koikkalainen, Kauko
  • Miettinen, Antti
  • Pouta, Eija
  • Vesterinen, Janne

Abstract

This study introduces a prototype model for evaluating policies to abate agricultural nutrients in the Baltic Sea from a Finnish national point of view. The stochastic simulation model integrates nutrient dynamics of nitrogen and phosphorus in the sea basins adjoining the Finnish coast, nutrient loads from land and other sources, benefits from nutrient abatement (in the form of recreation and other ecosystem services) and the costs of agricultural abatement activities. The aim of this study is to present the overall structure of the model and to demonstrate its potential using preliminary parameters. The model is made flexible for further improvements in all of its ecological and economic components. Results of a sensitivity analysis suggest that investments in reducing the nutrient runoff from arable land in Finland would become profitable only if Finland’s neighbors in the northern Baltic committed themselves to similar reductions. Environmental investments for improving water quality yield the highest returns for the Bothnian Bay and the Gulf of Finland, and smaller returns for the Bothnian Sea. In the Bothnian Bay, the abatement activities become profitable because the riverine loads from Finland represent a high proportion of the total nutrient loads. In the Gulf of Finland, this proportion is low, but the size of the coastal population benefiting from improved water quality is high.

Suggested Citation

  • Hyytiainen, Kari & Ahtiainen, Heini & Heikkila, Jaakko & Helin, Janne & Huhtala, Anni & Iho, Antti & Koikkalainen, Kauko & Miettinen, Antti & Pouta, Eija & Vesterinen, Janne, 2009. "An integrated simulation model to evaluate national policies for the abatement of agricultural nutrients in the Baltic Sea," Discussion Papers 49896, MTT Agrifood Research Finland.
  • Handle: RePEc:ags:mttfdp:49896
    DOI: 10.22004/ag.econ.49896
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/49896/files/DP2009_2.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.49896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marita Laukkanen & Anni Huhtala, 2008. "Optimal management of a eutrophied coastal ecosystem: balancing agricultural and municipal abatement measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 139-159, February.
    2. R. Turner, 2007. "Limits to CBA in UK and European environmental policy: retrospects and future prospects," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 37(1), pages 253-269, May.
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, October.
    4. Ahtiainen, Heini, 2009. "Valuing international marine resources: A meta-analysis on the Baltic Sea," Discussion Papers 48915, MTT Agrifood Research Finland.
    5. Olof Byström, 2000. "The Replacement Value of Wetlands in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 16(4), pages 347-362, August.
    6. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 1039-1061.
    7. Holly J. Michael & Kevin J. Boyle & Roy Bouchard, 2000. "Does the Measurement of Environmental Quality Affect Implicit Prices Estimated from Hedonic Models?," Land Economics, University of Wisconsin Press, vol. 76(2), pages 283-298.
    8. Brady, Mark, 2003. "The relative cost-efficiency of arable nitrogen management in Sweden," Ecological Economics, Elsevier, vol. 47(1), pages 53-70, November.
    9. Koikkalainen, Kauko & Laukkanen, Marita & Helin, Janne, 2006. "Abatement costs for agricultural nitrogen and phosphorus loads: a case study of South-Western Finland," Discussion Papers 11867, MTT Agrifood Research Finland.
    10. Elofsson, Katarina, 2003. "Cost-effective reductions of stochastic agricultural loads to the Baltic Sea," Ecological Economics, Elsevier, vol. 47(1), pages 13-31, November.
    11. Turner, R. Kerry & Georgiou, Stavros & Gren, Ing-Marie & Wulff, Fredric & Barrett, Scott & Soderqvist, Tore & Bateman, Ian J. & Folke, Carl & Langaas, Sindre & Zylicz, Tomasz, 1999. "Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study," Ecological Economics, Elsevier, vol. 30(2), pages 333-352, August.
    12. Honkatukia, Juha & Ollikainen, Markku, 2001. "Towards Efficient Pollution Control in the Baltic Sea. An anatomy of current failure with suggestions," Discussion Papers 755, The Research Institute of the Finnish Economy.
    13. Turtola, E. & Paajanen, A., 1995. "Influence of improved subsurface drainage on phosphorus losses and nitrogen leaching from a heavy clay soil," Agricultural Water Management, Elsevier, vol. 28(4), pages 295-310, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bertram, Christine & Rehdanz, Katrin, 2013. "On the environmental effectiveness of the EU Marine Strategy Framework Directive," Marine Policy, Elsevier, vol. 38(C), pages 25-40.
    2. Lassi Ahlvik & Yulia Pavlova, 2013. "A Strategic Analysis of Eutrophication Abatement in the Baltic Sea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 353-378, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kari Hyytiäinen & Anni Huhtala, 2014. "Combating eutrophication in coastal areas at risk for oil spills," Annals of Operations Research, Springer, vol. 219(1), pages 101-121, August.
    2. George HALKOS & Georgia GALANI, 2014. "Cost Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas A Review," Journal of Advanced Research in Management, ASERS Publishing, vol. 5(1), pages 28-51.
    3. Kari Hyytiäinen & Lassi Ahlvik & Heini Ahtiainen & Janne Artell & Anni Huhtala & Kim Dahlbo, 2015. "Policy Goals for Improved Water Quality in the Baltic Sea: When do the Benefits Outweigh the Costs?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 217-241, June.
    4. Doole, Graeme J., 2012. "Cost-effective policies for improving water quality by reducing nitrate emissions from diverse dairy farms: An abatement–cost perspective," Agricultural Water Management, Elsevier, vol. 104(C), pages 10-20.
    5. Janne Antero Helin, 2014. "Reducing nutrient loads from dairy farms: a bioeconomic model with endogenous feeding and land use," Agricultural Economics, International Association of Agricultural Economists, vol. 45(2), pages 167-184, March.
    6. Marita Laukkanen & Anni Huhtala, 2008. "Optimal management of a eutrophied coastal ecosystem: balancing agricultural and municipal abatement measures," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 139-159, February.
    7. Kuosmanen, Timo & Laukkanen, Marita, 2009. "(In)Efficient Management of Interacting Environmental Bads," Discussion Papers 54287, MTT Agrifood Research Finland.
    8. Tenwalde, Tracy & Jones, Eugene & Hitzhusen, Frederick J., 2005. "An Economic Analysis of Consumer Expenditures for Safe Drinking Water: Addressing Nitrogen Risk with an Averting Cost Approach," 2005 Annual meeting, July 24-27, Providence, RI 19431, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Helin, Janne, 2009. "Does geography matter in nutrient abatement? Bioeconomic model of heteregoneus farm nutrient loads," 2009 Conference, August 16-22, 2009, Beijing, China 51693, International Association of Agricultural Economists.
    10. Larsson, Markus & Granstedt, Artur, 2010. "Sustainable governance of the agriculture and the Baltic Sea -- Agricultural reforms, food production and curbed eutrophication," Ecological Economics, Elsevier, vol. 69(10), pages 1943-1951, August.
    11. Fröschl, Lena & Pierrard, Roger & Schönbäck, Wilfried, 2008. "Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania," Ecological Economics, Elsevier, vol. 68(1-2), pages 96-105, December.
    12. Gren, Ing-Marie, 2008. "Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea," Ecological Economics, Elsevier, vol. 66(2-3), pages 337-347, June.
    13. Mikołaj Czajkowski & Hans E. Andersen & Gite Blicher-Mathiasen & Wiktor Budziński & Katarina Elofsson & Jan Hagemejer & Berit Hasler & Christoph Humborg & James C. R. Smart & Erik Smedberg & Per Ståln, 2020. "Increasing the cost-effectiveness of water quality improvements through pollution abatement target-setting at different spatial scales," Working Papers 2020-02, Faculty of Economic Sciences, University of Warsaw.
    14. Hyytiainen, Kari & Ahlvik, Lassi & Ahtiainen, Heini & Artell, Janne & Dahlbo, Kim & Huhtala, Anni, 2013. "Spatially explicit bio-economic modelling for the Baltic Sea: Do the benefits of nutrient abatement outweigh the costs?," Discussion Papers 160728, MTT Agrifood Research Finland.
    15. Balana, Bedru Babulo & Vinten, Andy & Slee, Bill, 2011. "A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: Key issues, methods, and applications," Ecological Economics, Elsevier, vol. 70(6), pages 1021-1031, April.
    16. Dietz, Simon & Venmans, Frank, 2019. "The endowment effect, discounting and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 97(C), pages 67-91.
    17. D. Espinoza & J. Morris & H. Baroud & M. Bisogno & A. Cifuentes & A. Gentzoglanis & L. Luccioni & J. Rojo & F. Vahedifard, 2020. "The role of traditional discounted cash flows in the tragedy of the horizon: another inconvenient truth," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(4), pages 643-660, April.
    18. Iho, Antti & Laukkanen, Marita, 2009. "Dynamically Optimal Phosphorus Management and Agricultural Water Protection," Discussion Papers 54285, MTT Agrifood Research Finland.
    19. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    20. Marita Laukkanen & Céline Nauges, 2014. "Evaluating Greening Farm Policies: A Structural Model for Assessing Agri-environmental Subsidies," Land Economics, University of Wisconsin Press, vol. 90(3), pages 458-481.

    More about this item

    Keywords

    Environmental Economics and Policy; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:mttfdp:49896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/mttlgfi.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.