IDEAS home Printed from https://ideas.repec.org/p/ags/iaae06/25629.html
   My bibliography  Save this paper

Weather Derivatives as an Instrument to Hedge Against the Risk of High Energy Cost in Greenhouse Production

Author

Listed:
  • Berg, Ernst
  • Schmitz, Bernhard
  • Starp, Michael

Abstract

In many areas agriculture is exposed to weather related risks. Weather derivatives that get more and more in the focus of interest can reduce these risks. In this study we develop a temperature based weather derivative and analyse how it can reduce the weather-related energy cost risk in greenhouse production. We base this study on a temperature index whose stochastic characteristics are analysed. Finally we simulate the heating demand for energy of a horticultural firm.

Suggested Citation

  • Berg, Ernst & Schmitz, Bernhard & Starp, Michael, 2006. "Weather Derivatives as an Instrument to Hedge Against the Risk of High Energy Cost in Greenhouse Production," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25629, International Association of Agricultural Economists.
  • Handle: RePEc:ags:iaae06:25629
    DOI: 10.22004/ag.econ.25629
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/25629/files/cp060812.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.25629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin, Steven W. & Barnett, Barry J. & Coble, Keith H., 2001. "Developing And Pricing Precipitation Insurance," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(1), pages 1-14, July.
    2. Peter Alaton & Boualem Djehiche & David Stillberger, 2002. "On modelling and pricing weather derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 9(1), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afees A. Salisu & Kingsley Obiora, 2021. "COVID-19 pandemic and the crude oil market risk: hedging options with non-energy financial innovations," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    2. Berg, Ernst & Schmitz, Bernhard, 2007. "Weather-based instruments in the context of whole farm risk management," 101st Seminar, July 5-6, 2007, Berlin Germany 9269, European Association of Agricultural Economists.
    3. Heidelbach, Olaf, 2007. "Efficiency of selected risk management instruments: An empirical analysis of risk reduction in Kazakhstani crop production," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 40, number 92323.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turvey, Calum G. & Norton, Michael, 2008. "An Internet-Based Tool for Weather Risk Management," Agricultural and Resource Economics Review, Cambridge University Press, vol. 37(1), pages 63-78, April.
    2. Turvey, Calum G. & Weersink, Alfons, 2005. "Pricing Weather Insurance with a Random Strike Price: An Application to the Ontario Ice Wine Harvest," 2005 Annual meeting, July 24-27, Providence, RI 19255, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Berg, Ernst & Schmitz, Bernhard & Starp, Michael, 2006. "Weather derivatives as an instrument to hedge against the risk of high energy cost in greenhouse production," 2006 Annual meeting, July 23-26, Long Beach, CA 21378, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    4. Ahmet Göncü, 2013. "Comparison of temperature models using heating and cooling degree days futures," Journal of Risk Finance, Emerald Group Publishing, vol. 14(2), pages 159-178, February.
    5. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    6. Simmons, Phil & Edwards, Miriam & Byrnes, Joel, 2007. "Willingness to Pay for Weather Derivatives by Australian Wheat Farmers," 101st Seminar, July 5-6, 2007, Berlin Germany 9262, European Association of Agricultural Economists.
    7. Musshoff, Oliver & Hirschauer, Norbert, 2008. "Hedging von Mengenrisiken in der Landwirtschaft – Wie teuer dürfen „ineffektive“ Wetterderivate sein?," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 57(05), pages 1-12.
    8. Hougaard, Jens Leth & Kronborg, Dorte & Smilgins, Aleksandrs, 2017. "Fair division of costs in green energy markets," Energy, Elsevier, vol. 139(C), pages 220-230.
    9. Musshoff, Oliver & Odening, Martin & Xu, Wei, 2006. "Modeling and Hedging Rain Risk," 2006 Annual meeting, July 23-26, Long Beach, CA 21050, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Aur'elien Alfonsi & Nerea Vadillo, 2023. "Risk valuation of quanto derivatives on temperature and electricity," Papers 2310.07692, arXiv.org.
    11. Pérez Blanco, Carlos Dionisio & Gómez Gómez, Carlos Mario & Del Villar García, Alberto, 2011. "El riesgo de disponibilidad de agua en la agricultura: una aplicación a las cuencas del Guadalquivir y del Segura/Water Availability Risk in Agriculture: An Application to Guadalquivir and Segura Rive," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 333-358, Abril.
    12. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    13. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    14. E. Carkin & S. Chekirov & A. Echimova & C. Johnston & C. Li & V. Secrieru & A. Strelnikova & M. Trier & V. Trubnikov & Э. Каркин & С. Чекиров & А. Екимова & К. Джонстон & К. Ли & В. Секриеру & А. Стре, 2018. "Погодные деривативы в России: страхование фермеров от колебаний температуры // Weather Derivatives in Russia: Farmers’ Insurance against Temperature Fluctuations," Review of Business and Economics Studies // Review of Business and Economics Studies, Финансовый Университет // Financial University, vol. 6(1), pages 29-42.
    15. Zhiwei Shen & Martin Odening, 2013. "Coping with systemic risk in index-based crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 44(1), pages 1-13, January.
    16. Larsson, Karl, 2023. "Parametric heat wave insurance," Journal of Commodity Markets, Elsevier, vol. 31(C).
    17. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    18. L. Kermiche & N. Vuillermet, 2016. "Weather derivatives structuring and pricing: a sustainable agricultural approach in Africa," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 165-177, January.
    19. Dupuis, Debbie J., 2011. "Forecasting temperature to price CME temperature derivatives," International Journal of Forecasting, Elsevier, vol. 27(2), pages 602-618.
    20. Sun, Baojing & van Kooten, G. Cornelis, 2014. "Financial Weather Options for Crop Production," Working Papers 164323, University of Victoria, Resource Economics and Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:iaae06:25629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.