IDEAS home Printed from https://ideas.repec.org/p/ags/feemcl/148917.html
   My bibliography  Save this paper

Geoengineering and Abatement: A “flat” Relationship under Uncertainty

Author

Listed:
  • Emmerling, Johannes
  • Tavoni, Massimo

Abstract

The potential of geoengineering as an alternative or complementary option to mitigation and adaptation has received increased interest in recent years. The scientific assessment of geoengineering is driven to a large extent by assumptions about its effectiveness, costs, and impacts, all of which are highly uncertain. This has led to a polarizing debate. This paper evaluates the role of Solar Radiation Management (SRM) on the optimal abatement path, focusing on the uncertainty about the effectiveness of SRM and the interaction with uncertain climate change response. Using standard economic models of dynamic decision theory under uncertainty, we show that abatement is decreasing in the probability of success of SRM, but that this relation is concave and thus that significant abatement reductions are optimal only if SRM is very likely to be effective. The results are confirmed even when considering positive correlation structures between the effectiveness of geoengineering and the magnitude of climate change. Using a stochastic version of an Integrated Assessment Model, the results are found to be robust for a wide range of parameters specification.

Suggested Citation

  • Emmerling, Johannes & Tavoni, Massimo, 2013. "Geoengineering and Abatement: A “flat” Relationship under Uncertainty," Climate Change and Sustainable Development 148917, Fondazione Eni Enrico Mattei (FEEM).
  • Handle: RePEc:ags:feemcl:148917
    DOI: 10.22004/ag.econ.148917
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/148917/files/NDL2013-031.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.148917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Toman, Michael & Shogren, Jason, 2000. "Climate Change Policy," RFF Working Paper Series dp-00-22, Resources for the Future.
    2. Juan Moreno-Cruz & David Keith, 2013. "Climate policy under uncertainty: a case for solar geoengineering," Climatic Change, Springer, vol. 121(3), pages 431-444, December.
    3. Jim M. Haywood & Andy Jones & Nicolas Bellouin & David Stephenson, 2013. "Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall," Nature Climate Change, Nature, vol. 3(7), pages 660-665, July.
    4. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    5. H. Damon Matthews & Nathan P. Gillett & Peter A. Stott & Kirsten Zickfeld, 2009. "The proportionality of global warming to cumulative carbon emissions," Nature, Nature, vol. 459(7248), pages 829-832, June.
    6. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    7. Adam Millard-Ball, 2012. "The Tuvalu Syndrome," Climatic Change, Springer, vol. 110(3), pages 1047-1066, February.
    8. Frank Ackerman & Elizabeth Stanton & Ramón Bueno, 2013. "Epstein–Zin Utility in DICE: Is Risk Aversion Irrelevant to Climate Policy?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 73-84, September.
    9. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    10. Johan Eyckmans & Jan Cornillie, 2000. "Efficiency and Equity of the EU Burden Sharing Agreement," Energy, Transport and Environment Working Papers Series ete0002, KU Leuven, Department of Economics - Research Group Energy, Transport and Environment, revised Jun 2002.
    11. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    12. Bosetti, Valentina & Tavoni, Massimo, 2009. "Uncertain R&D, backstop technology and GHGs stabilization," Energy Economics, Elsevier, vol. 31(Supplemen), pages 18-26.
    13. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    14. Victor Brovkin & Vladimir Petoukhov & Martin Claussen & Eva Bauer & David Archer & Carlo Jaeger, 2009. "Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure," Climatic Change, Springer, vol. 92(3), pages 243-259, February.
    15. Olivier Sterck, 2011. "Geoengineering as an alternative to mitigation: specification and dynamic implications," Working Papers halshs-00635487, HAL.
    16. Juan Moreno-Cruz & Katharine Ricke & David Keith, 2012. "A simple model to account for regional inequalities in the effectiveness of solar radiation management," Climatic Change, Springer, vol. 110(3), pages 649-668, February.
    17. Sally Kane & Jason Shogren, 2000. "Linking Adaptation and Mitigation in Climate Change Policy," Climatic Change, Springer, vol. 45(1), pages 75-102, April.
    18. Rob Swart & Natasha Marinova, 2010. "Policy options in a worst case climate change world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(6), pages 531-549, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gernot Klepper & Wilfried Rickels, 2014. "Climate Engineering: Economic Considerations and Research Challenges," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(2), pages 270-289.
    2. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.
    3. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    4. Tommi Ekholm & Hannele Korhonen, 2016. "Climate change mitigation strategy under an uncertain Solar Radiation Management possibility," Climatic Change, Springer, vol. 139(3), pages 503-515, December.
    5. Manoussi, Vassiliki & Xepapadeas, Anastasios, 2014. "Cooperation and Competition in Climate Change Policies: Mitigation and Climate Engineering when Countries are Asymmetric," Climate Change and Sustainable Development 190930, Fondazione Eni Enrico Mattei (FEEM).
    6. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    7. Baker, Erin & Olaleye, Olaitan & Aleluia Reis, Lara, 2015. "Decision frameworks and the investment in R&D," Energy Policy, Elsevier, vol. 80(C), pages 275-285.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Emmerling & Massimo Tavoni, 2018. "Climate Engineering and Abatement: A ‘flat’ Relationship Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(2), pages 395-415, February.
    2. Johannes Emmerling & Massimo Tavoni, 2017. "Quantifying Non-cooperative Climate Engineering," Working Papers 2017.58, Fondazione Eni Enrico Mattei.
    3. Olivier Sterck, 2011. "Geoengineering as an alternative to mitigation: specification and dynamic implications," Working Papers halshs-00635487, HAL.
    4. Garth Heutel & Juan Moreno-Cruz & Katharine Ricke, 2016. "Climate Engineering Economics," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 99-118, October.
    5. Dovern, Jonas & Harnisch, Sebastian & Klepper, Gernot & Platt, Ulrich & Oschlies, Andreas & Rickels, Wilfried, 2015. "Radiation Management: Gezielte Beeinflussung des globalen Strahlungshaushalts zur Kontrolle des anthropogenen Klimawandels," Kiel Discussion Papers 549/550, Kiel Institute for the World Economy (IfW Kiel).
    6. Baran Doda, 2014. "Why is geoengineering so tempting?," GRI Working Papers 170, Grantham Research Institute on Climate Change and the Environment.
    7. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    8. Timo Goeschl & Daniel Heyen & Juan Moreno-Cruz, 2013. "The Intergenerational Transfer of Solar Radiation Management Capabilities and Atmospheric Carbon Stocks," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(1), pages 85-104, September.
    9. Louis-Gaëtan Giraudet & Céline Guivarch, 2016. "Global warming as an asymmetric public bad," Working Papers 2016.26, FAERE - French Association of Environmental and Resource Economists.
    10. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2018. "Solar geoengineering, uncertainty, and the price of carbon," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 24-41.
    11. Dipu, Sudhakar & Quaas, Johannes & Quaas, Martin & Rickels, Wilfried & Mülmenstädt, Johannes & Boucher, Olivier, 2021. "Substantial Climate Response outside the Target Area in an Idealized Experiment of Regional Radiation Management," Open Access Publications from Kiel Institute for the World Economy 240193, Kiel Institute for the World Economy (IfW Kiel).
    12. Tommi Ekholm & Hannele Korhonen, 2016. "Climate change mitigation strategy under an uncertain Solar Radiation Management possibility," Climatic Change, Springer, vol. 139(3), pages 503-515, December.
    13. Oschlies, Andreas & Held, Hermann & Keller, David & Keller, Klaus & Mengis, Nadine & Quaas, Martin & Rickels, Wilfried & Schmidt, Hauke, 2017. "Indicators and Metrics for the Assessment of Climate Engineering," Open Access Publications from Kiel Institute for the World Economy 226354, Kiel Institute for the World Economy (IfW Kiel).
    14. Elnaz Roshan & Mohammad M. Khabbazan & Hermann Held, 2019. "Cost-Risk Trade-Off of Mitigation and Solar Geoengineering: Considering Regional Disparities Under Probabilistic Climate Sensitivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(1), pages 263-279, January.
    15. Klepper, Gernot & Dovern, Jonas & Rickels, Wilfried & Barben, Daniel & Goeschl, Timo & Harnisch, Sebastian & Heyen, Daniel & Janich, Nina & Maas, Achim & Matzner, Nils & Scheffran, Jürgen & Uther, Ste, 2016. "Herausforderung Climate Engineering: Bewertung neuer Optionen für den Klimaschutz," Kieler Beiträge zur Wirtschaftspolitik 8, Kiel Institute for the World Economy (IfW Kiel).
    16. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    17. Manoussi, Vassiliki & Xepapadeas, Anastasios & Emmerling, Johannes, 2018. "Climate engineering under deep uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 207-224.
    18. Ranjana Raghunathan, 2022. "Everyday Intimacies and Inter-Ethnic Relationships: Tracing Entanglements of Gender and Race in Multicultural Singapore," Sociological Research Online, , vol. 27(1), pages 77-94, March.
    19. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    20. Johannes Emmerling & Vassiliki Manoussi & Anastasios Xepapadeas, 2016. "Climate Engineering under Deep Uncertainty and Heterogeneity," Working Papers 2016.52, Fondazione Eni Enrico Mattei.

    More about this item

    Keywords

    Environmental Economics and Policy;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:feemcl:148917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.