IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/124717.html
   My bibliography  Save this paper

Optimal biomass-harvesting model for biobutanol biorefineries

Author

Listed:
  • Kumarappan, Subbu
  • Joshi, Satish V.

Abstract

The Energy Independence and Security Act (EISA) 2007 mandate the use of 21 billion gallons of advanced biofuels including 16 billion gallons of cellulosic biofuels by the year 2022. While much previous advanced biofuel related research has focused on cellulosic ethanol, advanced drop-in-biofuels such as biobutanol and renewable diesel are gaining significant attention because of their attractive combustion properties, compatibility with existing vehicle fleet, fuel distribution, and retailing infrastructure. While corn ethanol production has increased fast enough to keep up with the mandates, production of cellulosic and advanced biofuels has been well below the targets despite significant government support. A number of pilot and demonstration scale advanced biofuel facilities have been set up, but commercial scale facilities are yet to become operational. Scaling up this new biofuel sector poses significant economic and logistical challenges for regional planners and biofuel entrepreneurs in terms of feedstock supply assurance, supply chain development, bioefinery establishment, and setting up transport, storage and distribution infrastructure. Economies of scale in processing mean that, future cellulosic biorefineries are expected to be large-scale facilities using multiple sources of feedstocks. Assuring a reliable supply of feedstock in adequate quantity and appropriate quality at reasonable cost and low environmental impacts is a key factor driving emergence of a sustainable bioenergy sector. Assuming that a biorefinery is set up in a region that has more than adequate biomass potential, biorefinery managers then face the problem of contracting with producers for the actual supply quantities of feedstock over the expected operational life time of the biorefinery. These supply contracts specify the quantities of different feedstocks (e.g. agricultural crops, perennial grasses, woody biomass), the timing of the deliveries, and the geographical location of production. In other words, through these supply contracts, the biorefinery managers essentially have an opportunity to design the biomass harvest-shed both temporally and spatially. Considerations in determining the optimal mix of these supply contracts include: (i) lowering procurement costs (harvest, baling, transport, storage, and seasonal costs), (ii) maximizing fuel yields and minimizing conversion costs, (iii) reducing in greenhouse gas (GHG) emissions to qualify as a cellulosic biofuel under the federal renewable fuels standard or similar regulations, and possibly for tradable GHG credits, and (iv) meeting contracting constraints to assure supply, for example while annual crop producers may be willing to supply under annual contracts, perennial grass producers may demand longer term contracts with varying quantities matching the temporal yield patterns. In addition to the above criteria used by biorefinery managers, regional planners may impose additional constraints related to protection of ecosystem services, habitat protection, water resources, traffic patterns, and congestion. In this article, we develop a multi-period optimization model aimed determining the optimal mix of woody biomass, annual crops and perennial grasses for a biorefinery, taking into account the necessary contract terms, feedstock costs, transport costs, GHG emissions and other environmental impacts, production capacity constraints etc. The decision variables of the optimization model are the acreages of various feedstocks (woody biomass, 3 annual crops and perennial grasses) that are contracted for harvesting during each month of a 25 year planning horizon. While the model is structured to be applicable to a generic biorefinery regardless of location, we parameterize the model using information for a hypothetical biorefinery located in the Midwest, producing biobutanol. Two versions of the model are developed, one optimizing the private costs faced by the biorefinery manager, and a second version taking the perspective of a regional planner with additional optimization criteria and social constraints. Mathematical programming software GAMS and solver program MINOS are used to code and solve the formulated optimization programs. A growing body of literature has previously addressed issues surrounding the supply of biomass feedstock for biofuel production (e.g. Epplin et al., 2007; Mapemba et al., 2007; Mapemba et al., 2008; Sokhansanj et al., 2009; Khanna et al., 2010; Kang et al., 2010). While drawing on previous research, the models developed in this article have several novel features. (i) Existing studies treat the available biomass quantities in the region as exogenously given and then try to minimize procurement costs. In comparison, this model treats biomass acreage to be harvested as an endogenous decision variable subject to overall biomass availability constraints. (ii) Unlike most existing studies, in this model transport costs are endogenously determined as a function of harvesting decisions. (iii) The temporal yield patterns of energy crops are modeled explicitly unlike many other studies which use steady state average yields. (iv) GHG emissions are also endogenously determined based on feedstock sourcing decisions. (v) The legal, institutional, and ecosystem sustainability constraints that are necessary from a regional planning perspective are also incorporated. (vi) While almost all previous studies model cellulosic ethanol biorefineries, this model is specifically aimed at biobutanol biorefineries. As a result, these models provide better insights into the realities of biomass procurement, especially for the emerging drop-in advanced biofuel production.

Suggested Citation

  • Kumarappan, Subbu & Joshi, Satish V., 2012. "Optimal biomass-harvesting model for biobutanol biorefineries," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124717, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:124717
    DOI: 10.22004/ag.econ.124717
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/124717/files/Kumarappan.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.124717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Madhu Khanna & Xiaoguang Chen & Haixiao Huang & Hayri Onal, 2011. "Supply of Cellulosic Biofuel Feedstocks and Regional Production Pattern," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 473-480.
    2. Seungmo Kang & Hayri Önal & Yanfeng Ouyang & Jürgen Scheffran & Ü Deniz Tursun, 2010. "Optimizing the Biofuels Infrastructure: Transportation Networks and Biorefinery Locations in Illinois," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 151-173, Springer.
    3. Epplin, Francis M. & Clark, Christopher D. & Roberts, Roland K. & Hwang, Seonghuyk, 2007. "AJAE Appendix: Challenges to the Development of a Dedicated Energy Crop," American Journal of Agricultural Economics APPENDICES, Agricultural and Applied Economics Association, vol. 89(5), pages 1-13, December.
    4. Perkis, David F. & Tyner, Wallace E. & Preckel, Paul V. & Brechbill, Sarah C., 2008. "Spatial optimization and economies of scale for cellulose to ethanol facilities in Indiana," Risk, Infrastructure and Industry Evolution Conference, June 24-25, 2008, Berkeley, California 48730, Farm Foundation.
    5. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Feng Song & Jinhua Zhao & Scott M. Swinton, 2011. "Switching to Perennial Energy Crops Under Uncertainty and Costly Reversibility," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 764-779.
    7. Wang, Chenguang & Larson, James A. & English, Burton C. & Jensen, Kimberly L., 2009. "Cost Analysis of Alternative Harvest, Storage and Transportation Methods for Delivering Switchgrass to a Biorefinery from the Farmers’ perspective," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 46812, Southern Agricultural Economics Association.
    8. Ben C. French, 1960. "Some Considerations in Estimating Assembly Cost Functions for Agricultural Processing Operations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 42(4), pages 767-778.
    9. Bruce McCarl & Darius Adams & Ralph Alig & John Chmelik, 2000. "Competitiveness of biomass‐fueled electrical power plants," Annals of Operations Research, Springer, vol. 94(1), pages 37-55, January.
    10. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    11. Lawrence D. Mapemba & Francis M. Epplin & Charles M. Taliaferro & Raymond L. Huhnke, 2007. "Biorefinery Feedstock Production on Conservation Reserve Program Land," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 227-246.
    12. Kumarappan, Subbu & Joshi, Satish V., 2008. "GHG Trading Framework for the U.S. Biofuels Sector," Environmental and Rural Development Impacts Conference, October 15-16, 2008, St. Louis, Missouri 54530, Farm Foundation, Transition to a Bio Economy Conferences.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosburg, Alicia & Miranowski, John & Jacobs, Keri, 2013. "Cellulosic Biofuel Supply with Heterogeneous Biomass Suppliers: An Application to Switchgrass-based Ethanol," Staff General Research Papers Archive 36359, Iowa State University, Department of Economics.
    2. Fumasi, Roland J. & Klose, Steven L. & Kaase, Greg H. & Richardson, James W. & Outlaw, Joe L., 2008. "Viability of cellulosic feedstock production from producer to biorefinery," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48716, Farm Foundation.
    3. Lynes, Melissa K. & Bergtold, Jason S. & Williams, Jeffery R. & Fewell, Jason E., 2016. "Willingness of Kansas farm managers to produce alternative cellulosic biofuel feedstocks: An analysis of adoption and initial acreage allocation," Energy Economics, Elsevier, vol. 59(C), pages 336-348.
    4. Larson, James A., 2008. "Risk and uncertainty at the farm level," Risk, Infrastructure and Industry Evolution Conference, June 24-25, 2008, Berkeley, California 48728, Farm Foundation.
    5. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    6. Epplin, Francis M., 2008. "Millions of acres for dedicated energy crops: farms, ranches, or plantations?," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48711, Farm Foundation.
    7. Epplin, Francis M. & Haque, Mohua, 2011. "Policies to Facilitate Conversion of Millions of Acres to the Production of Biofuel Feedstock," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 385-398, August.
    8. Mooney, Daniel F. & Roberts, Roland K. & English, Burton C. & Tyler, Donald D. & Larson, James A., 2008. "Switchgrass Production in Marginal Environments: A Comparative Economic Analysis across Four West Tennessee Landscapes," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6403, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Albashabsheh, Nibal T. & Heier Stamm, Jessica L., 2019. "Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 545-562.
    10. Sylvie Démurger & Haiyuan Wan, 2012. "Payments for ecological restoration and internal migration in China: the sloping land conversion program in Ningxia," IZA Journal of Migration and Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 1(1), pages 1-22, December.
    11. Fumasi, Roland J. & Richardson, James W. & Outlaw, Joe L., 2008. "The Economics Of Growing And Delivering Cellulosic Feedstocks In The Beaumont, Texas Area," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6788, Southern Agricultural Economics Association.
    12. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    13. Gouzaye, Amadou & Epplin, Francis, 2016. "Restricting Switchgrass Biomass Feedstock Production to Marginal Land to Limit Competition with Food Production," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229200, Southern Agricultural Economics Association.
    14. Szulczyk, Kenneth R. & McCarl, Bruce A. & Cornforth, Gerald, 2010. "Market penetration of ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 394-403, January.
    15. Sylvie Démurger, 2011. "Payments for ecological restoration and rural labor migration in China: The Sloping Land Conversion Program in Ningxia," Post-Print halshs-00673808, HAL.
    16. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    17. Dumortier, Jerome & Kauffman, Nathan & Hayes, Dermot J., 2017. "Production and spatial distribution of switchgrass and miscanthus in the United States under uncertainty and sunk cost," Energy Economics, Elsevier, vol. 67(C), pages 300-314.
    18. Ruiqing Miao & Madhu Khanna, 2017. "Effectiveness of the Biomass Crop Assistance Program: Roles of Behavioral Factors, Credit Constraint, and Program Design," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(4), pages 584-608.
    19. Zhou, Xia “Vivian” & Clark, Christopher D. & Lambert, Dayton M. & English, Burton C. & Larson, James A. & Boyer, Christopher N., 2015. "Biomass supply and nutrient runoff abatement under alternative biofuel feedstock production subsidies," Agricultural Systems, Elsevier, vol. 139(C), pages 250-259.
    20. Latta, Gregory S. & Baker, Justin S. & Beach, Robert H. & Rose, Steven K. & McCarl, Bruce A., 2013. "A multi-sector intertemporal optimization approach to assess the GHG implications of U.S. forest and agricultural biomass electricity expansion," Journal of Forest Economics, Elsevier, vol. 19(4), pages 361-383.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:124717. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.