IDEAS home Printed from https://ideas.repec.org/p/ags/aaea07/9700.html
   My bibliography  Save this paper

Spatial Endogenous Fire Risk and Efficient Fuel Management and Timber Harvest

Author

Listed:
  • Konoshima, Masashi
  • Montgomery, Claire A.
  • Albers, Heidi J.
  • Arthur, Jeffrey L.

Abstract

This paper integrates a spatial fire behavior model and a stochastic dynamic optimization model to determine the optimal spatial pattern of fuel management and timber harvest. Each year's fire season causes the loss of forest values and lives in the western US. This paper uses a multi-plot analysis and incorporates uncertainty about fire ignition locations and weather conditions to inform policy by examining the role of spatial endogenous risk - where management actions on one stand affect fire risk in that and adjacent stands. The results support two current strategies, but question two other strategies, for managing forests with fire risk.

Suggested Citation

  • Konoshima, Masashi & Montgomery, Claire A. & Albers, Heidi J. & Arthur, Jeffrey L., 2007. "Spatial Endogenous Fire Risk and Efficient Fuel Management and Timber Harvest," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 9700, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  • Handle: RePEc:ags:aaea07:9700
    DOI: 10.22004/ag.econ.9700
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/9700/files/sp07mo01.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.9700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kenneth J. Arrow & Anthony C. Fisher, 1974. "Environmental Preservation, Uncertainty, and Irreversibility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 88(2), pages 312-319.
    2. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    3. Jonathan Yoder, 2004. "Playing with Fire: Endogenous Risk in Resource Management," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 933-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Langpap & JunJie Wu, 2021. "Preemptive Incentives and Liability Rules for Wildfire Risk Management," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1783-1801, October.
    2. Travis Warziniack & Patricia Champ & James Meldrum & Hannah Brenkert-Smith & Christopher M. Barth & Lilia C. Falk, 2019. "Responding to Risky Neighbors: Testing for Spatial Spillover Effects for Defensible Space in a Fire-Prone WUI Community," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1023-1047, August.
    3. Charles Sims & David Aadland & David Finnoff & James Powell, 2013. "How Ecosystem Service Provision Can Increase Forest Mortality from Insect Outbreaks," Land Economics, University of Wisconsin Press, vol. 89(1), pages 154-176.
    4. Shady S. Atallah & Miguel I. Gómez & Jon M. Conrad, 2017. "Specification of Spatial-Dynamic Externalities and Implications for Strategic Behavior in Disease Control," Land Economics, University of Wisconsin Press, vol. 93(2), pages 209-229.
    5. Gwenlyn M. Busby & Heidi J. Albers & Claire A. Montgomery, 2012. "Wildfire Risk Management in a Landscape with Fragmented Ownership and Spatial Interactions," Land Economics, University of Wisconsin Press, vol. 88(3), pages 496-517.
    6. Kim, Taeyoung & Langpap, Christian, 2016. "Agricultural landowners’ response to incentives for afforestation," Resource and Energy Economics, Elsevier, vol. 43(C), pages 93-111.
    7. Prante, Tyler & Little, Joseph M. & Jones, Michael L. & McKee, Michael & Berrens, Robert P., 2011. "Inducing private wildfire risk mitigation: Experimental investigation of measures on adjacent public lands," Journal of Forest Economics, Elsevier, vol. 17(4), pages 415-431.
    8. Rashidi, Eghbal & Medal, Hugh & Gordon, Jason & Grala, Robert & Varner, Morgan, 2017. "A maximal covering location-based model for analyzing the vulnerability of landscapes to wildfires: Assessing the worst-case scenario," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1095-1105.
    9. Christopher Costello & Nicolas Querou & Agnès Tomini, 2014. "Spatial concessions with limited tenure," Post-Print hal-01123392, HAL.
    10. David Aadland & Charles Sims & David Finnoff, 2015. "Spatial Dynamics of Optimal Management in Bioeconomic Systems," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 545-577, April.
    11. Warziniack, Travis & Sims, Charles & Haas, Jessica, 2019. "Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    12. Sims, Charles & Aadland, David & Finnoff, David, 2010. "A dynamic bioeconomic analysis of mountain pine beetle epidemics," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2407-2419, December.
    13. James Minas & John Hearne & David Martell, 2015. "An integrated optimization model for fuel management and fire suppression preparedness planning," Annals of Operations Research, Springer, vol. 232(1), pages 201-215, September.
    14. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    15. Michael S. Hand & Matthew J. Wibbenmeyer & David E. Calkin & Matthew P. Thompson, 2015. "Risk Preferences, Probability Weighting, and Strategy Tradeoffs in Wildfire Management," Risk Analysis, John Wiley & Sons, vol. 35(10), pages 1876-1891, October.
    16. Lauer, Christopher J. & Montgomery, Claire A. & Dietterich, Thomas G., 2017. "Spatial interactions and optimal forest management on a fire-threatened landscape," Forest Policy and Economics, Elsevier, vol. 83(C), pages 107-120.
    17. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.
    18. Bhuiyan, Tanveer Hossain & Moseley, Maxwell C. & Medal, Hugh R. & Rashidi, Eghbal & Grala, Robert K., 2019. "A stochastic programming model with endogenous uncertainty for incentivizing fuel reduction treatment under uncertain landowner behavior," European Journal of Operational Research, Elsevier, vol. 277(2), pages 699-718.
    19. Susete Marques & Marco Marto & Vladimir Bushenkov & Marc McDill & JoséG. Borges, 2017. "Addressing Wildfire Risk in Forest Management Planning with Multiple Criteria Decision Making Methods," Sustainability, MDPI, vol. 9(2), pages 1-17, February.
    20. Rossi, David & Kuusela, Olli-Pekka, 2023. "Carbon and Timber Management in Western Oregon under Tax-Financed Investments in Wildfire Risk Mitigation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    2. Ning, Zhuo & Sun, Changyou, 2017. "Forest management with wildfire risk, prescribed burning and diverse carbon policies," Forest Policy and Economics, Elsevier, vol. 75(C), pages 95-102.
    3. Adam J. Daigneault & Mario J. Miranda & Brent Sohngen, 2010. "Optimal Forest Management with Carbon Sequestration Credits and Endogenous Fire Risk," Land Economics, University of Wisconsin Press, vol. 86(1), pages 155-172.
    4. Gwenlyn M. Busby & Heidi J. Albers & Claire A. Montgomery, 2012. "Wildfire Risk Management in a Landscape with Fragmented Ownership and Spatial Interactions," Land Economics, University of Wisconsin Press, vol. 88(3), pages 496-517.
    5. Patto, João V. & Rosa, Renato, 2022. "Adapting to frequent fires: Optimal forest management revisited," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    6. Christian Langpap & JunJie Wu, 2021. "Preemptive Incentives and Liability Rules for Wildfire Risk Management," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1783-1801, October.
    7. Insley, Margaret & Lei, Manle, 2007. "Hedges and Trees: Incorporating Fire Risk into Optimal Decisions in Forestry Using a No-Arbitrage Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(3), pages 1-23, December.
    8. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    9. Laure Cabantous & Olivier Chanel & Jean-Christophe Vergnaud, 2009. "Transport, Health and Climate Change: Deciding on the Optimal Policy," Economie Internationale, CEPII research center, issue 120, pages 11-36.
    10. Narain, Urvashi & Hanemann, W. Michael & Fisher, Anthony C., 2004. "The Temporal Resolution of Uncertainty and the Irreversibility Effect," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7nn328qg, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Jackie Krafft & Isabelle Nicolaï, 1995. "Commitment Procedures In R&D Investments : An Examination Of Different Varieties," Post-Print hal-01799270, HAL.
    12. Arvind Magesan & Matthew A. Turner, 2008. "The Value of Information in Public Decisions," Working Papers tecipa-345, University of Toronto, Department of Economics.
    13. Michael Finus & Pedro Pintassilgo & Alistair Ulph, 2014. "International Environmental Agreements with Uncertainty, Learning and Risk Aversion," Department of Economics Working Papers 19/14, University of Bath, Department of Economics.
    14. Attanasi, Giuseppe Marco & Montesano, Aldo, 2010. "Testing Value vs Waiting Value in Environmental Decisions under Uncertainty," TSE Working Papers 10-154, Toulouse School of Economics (TSE).
    15. Nathalie Berta, 2016. "On the definition of externality as a missing market," Post-Print halshs-01277990, HAL.
    16. Narain, Urvashi & Hanemann, W. Michael & Fisher, Anthony C, 2007. "The irreversibility effect in environmental decisionmaking," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7bc5t8cf, Department of Agricultural & Resource Economics, UC Berkeley.
    17. Giovanni Immordino, 2005. "Uncertainty and the Cost of Reversal," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 119-128, December.
    18. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    19. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    20. Gordon G. Sollars & Sorin Tuluca, 2012. "The Optimal Timing of Strategic Action – A Real Options Approach," Journal of Entrepreneurship, Management and Innovation, Fundacja Upowszechniająca Wiedzę i Naukę "Cognitione", vol. 8(2), pages 78-95.

    More about this item

    Keywords

    Resource /Energy Economics and Policy;

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea07:9700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.