IDEAS home Printed from https://ideas.repec.org/p/aah/create/2014-21.html
   My bibliography  Save this paper

Discretization of Lévy semistationary processes with application to estimation

Author

Listed:
  • Mikkel Bennedsen

    (Aarhus University and CREATES)

  • Asger Lunde

    (Aarhus University and CREATES)

  • Mikko S. Pakkanen

    (Aarhus University and CREATES)

Abstract

Motivated by the construction of the Itô stochastic integral, we consider a step function method to discretize and simulate volatility modulated Lévy semistationary processes. Moreover, we assess the accuracy of the method with a particular focus on integrating kernels with a singularity at the origin. Using the simulation method, we study the finite sample properties of some recently developed estimators of realized volatility and associated parametric estimators for Brownian semistationary processes. Although the theoretical properties of these estimators have been established under high frequency asymptotics, it turns out that the estimators perform well also in a low frequency setting.

Suggested Citation

  • Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2014. "Discretization of Lévy semistationary processes with application to estimation," CREATES Research Papers 2014-21, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2014-21
    as

    Download full text from publisher

    File URL: https://repec.econ.au.dk/repec/creates/rp/14/rp14_21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corcuera, José Manuel & Hedevang, Emil & Pakkanen, Mikko S. & Podolskij, Mark, 2013. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2552-2574.
    2. Barndorff-Nielsen, Ole E. & Corcuera, José Manuel & Podolskij, Mark, 2009. "Power variation for Gaussian processes with stationary increments," Stochastic Processes and their Applications, Elsevier, vol. 119(6), pages 1845-1865, June.
    3. Ole E. Barndorff-Nielsen & Fred Espen Benth & Almut E. D. Veraart, 2013. "Modelling energy spot prices by volatility modulated L\'{e}vy-driven Volterra processes," Papers 1307.6332, arXiv.org.
    4. Ole E. Barndorff-Nielsen & Mikko S. Pakkanen & Jürgen Schmiegel, 2013. "Assessing Relative Volatility/Intermittency/Energy Dissipation," CREATES Research Papers 2013-15, Department of Economics and Business Economics, Aarhus University.
    5. Almut E. D. Veraart & Luitgard A. M. Veraart, 2012. "Modelling electricity day–ahead prices by multivariate Lévy semistationary processes," CREATES Research Papers 2012-13, Department of Economics and Business Economics, Aarhus University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," Papers 1507.03004, arXiv.org, revised May 2017.
    2. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2015. "Hybrid scheme for Brownian semistationary processes," CREATES Research Papers 2015-43, Department of Economics and Business Economics, Aarhus University.
    3. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Podolskij, 2014. "Ambit fields: survey and new challenges," CREATES Research Papers 2014-51, Department of Economics and Business Economics, Aarhus University.
    2. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    3. Sauri, Orimar & Veraart, Almut E.D., 2017. "On the class of distributions of subordinated Lévy processes and bases," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 475-496.
    4. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," Papers 1608.01895, arXiv.org, revised Mar 2018.
    5. Li, Yuan & Pakkanen, Mikko S. & Veraart, Almut E.D., 2023. "Limit theorems for the realised semicovariances of multivariate Brownian semistationary processes," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 202-231.
    6. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    7. Mikkel Bennedsen, 2016. "Semiparametric inference on the fractal index of Gaussian and conditionally Gaussian time series data," CREATES Research Papers 2016-21, Department of Economics and Business Economics, Aarhus University.
    8. Kerstin Gärtner & Mark Podolskij, 2014. "On non-standard limits of Brownian semi-stationary," CREATES Research Papers 2014-50, Department of Economics and Business Economics, Aarhus University.
    9. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    10. Almut E. D. Veraart & Luitgard A. M. Veraart, 2013. "Risk premia in energy markets," CREATES Research Papers 2013-02, Department of Economics and Business Economics, Aarhus University.
    11. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2016. "Decoupling the short- and long-term behavior of stochastic volatility," Papers 1610.00332, arXiv.org, revised Jan 2021.
    12. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Hybrid scheme for Brownian semistationary processes," Finance and Stochastics, Springer, vol. 21(4), pages 931-965, October.
    13. Ole E. Barndorff-Nielsen & Mikko S. Pakkanen & Jürgen Schmiegel, 2013. "Assessing Relative Volatility/Intermittency/Energy Dissipation," CREATES Research Papers 2013-15, Department of Economics and Business Economics, Aarhus University.
    14. Andreas Basse-O'Connor & Raphaël Lachièze-Rey & Mark Podolskij, 2015. "Limit theorems for stationary increments Lévy driven moving averages," CREATES Research Papers 2015-56, Department of Economics and Business Economics, Aarhus University.
    15. Mikkel Bennedsen, 2015. "Rough electricity: a new fractal multi-factor model of electricity spot prices," CREATES Research Papers 2015-42, Department of Economics and Business Economics, Aarhus University.
    16. Mark Podolskij & Nopporn Thamrongrat, 2015. "A weak limit theorem for numerical approximation of Brownian semi-stationary processes," CREATES Research Papers 2015-53, Department of Economics and Business Economics, Aarhus University.
    17. Pakkanen, Mikko S., 2014. "Limit theorems for power variations of ambit fields driven by white noise," Stochastic Processes and their Applications, Elsevier, vol. 124(5), pages 1942-1973.
    18. Mikko S. Pakkanen & Anthony Réveillac, 2014. "Functional limit theorems for generalized variations of the fractional Brownian sheet," CREATES Research Papers 2014-14, Department of Economics and Business Economics, Aarhus University.
    19. Gärtner, Kerstin & Podolskij, Mark, 2015. "On non-standard limits of Brownian semi-stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 653-677.
    20. Bennedsen, Mikkel, 2017. "A rough multi-factor model of electricity spot prices," Energy Economics, Elsevier, vol. 63(C), pages 301-313.

    More about this item

    Keywords

    Stochastic simulation; discretization; Lévy semistationary processes; stochastic volatility; estimation; finite sample properties;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2014-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.