Advanced Search
MyIDEAS: Login to save this paper or follow this series

Multipower Variation for Brownian Semistationary Processes

Contents:

Author Info

  • Ole E. Barndorff-Nielsen

    ()
    (Aarhus University and CREATES)

  • José Manuel Corcuera

    ()
    (Universitat de Barcelona)

  • Mark Podolskij

    ()
    (ETH Zürich and CREATES)

Abstract

In this paper we study the asymptotic behaviour of power and multipower variations of stochatstic processes. Processes of the type considered serve in particular, to analyse data of velocity increments of a uid in a turbulence regime with spot intermittency sigma. The purpose of the present paper is to determine the probabilistic limit behaviour of the (multi)power variations of Y , as a basis for studying properties of the intermittency process. Notably the processes Y are in general not of the semimartingale kind and the established theory of multipower variation for semimartingales does not suffice for deriving the limit properties. As a key tool for the results a general central limit theorem for triangular Gaussian schemes is formulated and proved. Examples and an application to realised variance ratio are given.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://ftp.econ.au.dk/creates/rp/09/rp09_21.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2009-21.

as in new window
Length: 45
Date of creation: 26 May 2009
Date of revision:
Handle: RePEc:aah:create:2009-21

Contact details of provider:
Web page: http://www.econ.au.dk/afn/

Related research

Keywords: Central Limit Theorem; Gaussian Processes; Intermittency; Nonsemimartingales; Turbulence; Volatility; Wiener Chaos;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ole Barndorff-Nielsen & Svend Erik Graversen & Jean Jacod & Mark Podolskij & Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Papers 2004-W29, Economics Group, Nuffield College, University of Oxford.
  2. Neil Shephard & Matthias Winkel & Ole E. Barndorff-Nielsen, 2005. "Limit theorems for multipower variation in the presence of jumps," Economics Series Working Papers 2005-FE-06, University of Oxford, Department of Economics.
  3. Nualart, D. & Ortiz-Latorre, S., 2008. "Central limit theorems for multiple stochastic integrals and Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 614-628, April.
  4. Kinnebrock, Silja & Podolskij, Mark, 2008. "A note on the central limit theorem for bipower variation of general functions," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 1056-1070, June.
  5. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2007. "Power variation for Gaussian processes with stationary increments," CREATES Research Papers 2007-42, School of Economics and Management, University of Aarhus.
  6. Veraart, Almut E.D., 2010. "Inference For The Jump Part Of Quadratic Variation Of Itô Semimartingales," Econometric Theory, Cambridge University Press, vol. 26(02), pages 331-368, April.
  7. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.
  8. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
  9. Ho, Hwai-Chung & Sun, Tze-Chien, 1987. "A central limit theorem for non-instantaneous filters of a stationary Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 22(1), pages 144-155, June.
  10. Woerner Jeannette H. C., 2003. "Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models," Statistics & Risk Modeling, De Gruyter, vol. 21(1/2003), pages 47-68, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ivan Nourdin & Giovanni Peccati & Mark Podolskij, 2010. "Quantitative Breuer-Major Theorems," CREATES Research Papers 2010-22, School of Economics and Management, University of Aarhus.
  2. José Manuel Corcuera & Emil Hedevang & Mikko S. Pakkanen & Mark Podolskij, 2012. "Asymptotic theory for Brownian semi-stationary processes with application to turbulence," CREATES Research Papers 2012-52, School of Economics and Management, University of Aarhus.
  3. Mark Podolskij & Katrin Wasmuth, 2012. "Goodness-of-fit testing for fractional diffusions," CREATES Research Papers 2012-12, School of Economics and Management, University of Aarhus.
  4. Ole E. Barndorff-Nielsen & José Manuel Corcuera & Mark Podolskij, 2009. "Limit theorems for functionals of higher order differences of Brownian semi-stationary processes," CREATES Research Papers 2009-60, School of Economics and Management, University of Aarhus.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:aah:create:2009-21. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.