Advanced Search
MyIDEAS: Login

Arbitrage, state prices and portfolio theory

In: Handbook of the Economics of Finance

Contents:

Author Info

  • Dybvig, Philip H.
  • Ross, Stephen A.

Abstract

Neoclassical financial models provide the foundation for our understanding of finance. This chapter introduces the main ideas of neoclassical finance in a single-period context that avoids the technical difficulties of continuous-time models, but preserves the principal intuitions of the subject. The starting point of the analysis is the formulation of standard portfolio choice problems.A central conceptual result is the Fundamental Theorem of Asset Pricing, which asserts the equivalence of absence of arbitrage, the existence of a positive linear pricing rule, and the existence of an optimum for some agent who prefers more to less. A related conceptual result is the Pricing Rule Representation Theorem, which asserts that a positive linear pricing rule can be represented as using state prices, risk-neutral expectations, or a state-price density. Different equivalent representations are useful in different contexts.Many applied results can be derived from the first-order conditions of the portfolio choice problem. The first-order conditions say that marginal utility in each state is proportional to a consistent state-price density, where the constant of proportionality is determined by the budget constraint. If markets are complete, the implicit state-price density is uniquely determined by investment opportunities and must be the same as viewed by all agents, thus simplifying the choice problem. Solving first-order conditions for quantities gives us optimal portfolio choice, solving them for prices gives us asset pricing models, solving them for utilities gives us preferences, and solving them for probabilities gives us beliefs.We look at two popular asset pricing models, the CAPM and the APT, as well as complete-markets pricing. In the case of the CAPM, the first-order conditions link nicely to the traditional measures of portfolio performance.Further conceptual results include aggregation and mutual fund separation theory, both of which are useful for understanding equilibrium and asset pricing.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B7GX8-4DXJCWN-5/2/52713923ed3cbba2fc31207c585504df
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

as in new window

This chapter was published in:

  • G.M. Constantinides & M. Harris & R. M. Stulz (ed.), 2003. "Handbook of the Economics of Finance," Handbook of the Economics of Finance, Elsevier, edition 1, volume 1, number 2, March.
    This item is provided by Elsevier in its series Handbook of the Economics of Finance with number 2-10.

    Handle: RePEc:eee:finchp:2-10

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description

    Related research

    Keywords:

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. repec:ebl:ecbull:v:30:y:2010:i:1:p:182-191 is not listed on IDEAS
    2. Jiang-Lun Wu & Wei Yang, 2013. "A Galerkin approximation scheme for the mean correction in a mean-reversion stochastic differential equation," Papers 1305.1868, arXiv.org.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:finchp:2-10. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.