IDEAS home Printed from https://ideas.repec.org/f/pde544.html
   My authors  Follow this author

Hossein Dehghanisanij

Personal Details

First Name:Hossein
Middle Name:
Last Name:Dehghanisanij
Suffix:
RePEc Short-ID:pde544

Research output

as
Jump to: Articles

Articles

  1. Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.
  2. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.

    Cited by:

    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Garg, Naveen & Choudhary, O.P. & Thaman, S. & Sharma, Vikas & Singh, Harmanjeet & Vashistha, Monika & Sekhon, K.S. & Sharda, Rakesh & Dhaliwal, M.S., 2022. "Effects of irrigation water quality and NPK-fertigation levels on plant growth, yield and tuber size of potatoes in a sandy loam alluvial soil of semi-arid region of Indian Punjab," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    4. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2021. "Identifying the factors dominating the spatial distribution of water and salt in soil and cotton yield under arid environments of drip irrigation with different lateral lengths," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
    6. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    7. Aragüés, R. & Medina, E.T. & Martínez-Cob, A. & Faci, J., 2014. "Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard," Agricultural Water Management, Elsevier, vol. 142(C), pages 1-9.
    8. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).

  2. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.

    Cited by:

    1. Dinpashoh, Yagob, 2006. "Study of reference crop evapotranspiration in I.R. of Iran," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 123-129, July.
    2. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    3. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    4. Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.
    5. Landeras, Gorka & Ortiz-Barredo, Amaia & López, Jose Javier, 2008. "Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)," Agricultural Water Management, Elsevier, vol. 95(5), pages 553-565, May.
    6. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    7. Bessembinder, J.J.E. & Leffelaar, P.A. & Dhindwal, A.S. & Ponsioen, T.C., 2005. "Which crop and which drop, and the scope for improvement of water productivity," Agricultural Water Management, Elsevier, vol. 73(2), pages 113-130, May.
    8. O.E. Mohawesh, 2011. "Evaluation of evapotranspiration models for estimating daily reference evapotranspiration in arid and semiarid environments," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(4), pages 145-152.
    9. Ahmed, Shamseddin Musa, 2020. "Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-saharan Africa: The case of Sudan," Agricultural Water Management, Elsevier, vol. 232(C).
    10. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    11. Mohamed A. Mattar & A. A. Alazba & Bander Alblewi & Bahram Gharabaghi & Mohamed A. Yassin, 2016. "Evaluating and Calibrating Reference Evapotranspiration Models Using Water Balance under Hyper-Arid Environment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3745-3767, September.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Hossein Dehghanisanij should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.