IDEAS home Printed from https://ideas.repec.org/e/c/psd7.html
   My authors  Follow this author

Patrik Söderholm
(Patrik Soederholm)

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography of Economics:
  1. Christer Berglund & Patrik Söderholm, 2003. "An Econometric Analysis of Global Waste Paper Recovery and Utilization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(3), pages 429-456, November.

    Mentioned in:

    1. > Environmental and Natural Resource Economics > Economics of waste and recycling

Working papers

  1. Lauf, Thomas & Ek, Kristina & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2018. "The regional heterogeneity of wind power deployment: An empirical investigation of land-use policies in Germany and Sweden," UFZ Discussion Papers 1/2018, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Cited by:

    1. Felix Reutter & Charlotte Geiger & Paul Lehmann & Jan-Niklas Meier & Philip Tafarte, 2022. "Flächenziele für die Windenergie: Wie zielführend ist das neue Wind-an-Land-Gesetz? [Land Area Targets for Wind Energy: How Promising Is the New Onshore Wind Power Legislation?]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 102(9), pages 703-708, September.
    2. Meier, Jan-Niklas & Lehmann, Paul, 2022. "Optimal federal co-regulation of renewable energy deployment," Resource and Energy Economics, Elsevier, vol. 70(C).
    3. Lindvall, Daniel, 2023. "Why municipalities reject wind power: A study on municipal acceptance and rejection of wind power instalments in Sweden," Energy Policy, Elsevier, vol. 180(C).
    4. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2020. "Managing spatial sustainability trade-offs: The case of wind power," UFZ Discussion Papers 4/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    7. Lundin, Erik, 2021. "Geographic Price Granularity and Investments in Wind Power: Evidence From a Swedish Electricity Market Splitting Reform," Working Paper Series 1412, Research Institute of Industrial Economics.
    8. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    9. Hedenus, F. & Jakobsson, N. & Reichenberg, L. & Mattsson, N., 2022. "Historical wind deployment and implications for energy system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Bryngemark, Elina & Söderholm, Patrik & Thörn, Martina, 2023. "The adoption of green public procurement practices: Analytical challenges and empirical illustration on Swedish municipalities," Ecological Economics, Elsevier, vol. 204(PA).
    11. Meier, Jan-Niklas & Lehmann, Paul, 2020. "Optimal federal co-regulation of renewable energy deployment," UFZ Discussion Papers 8/2020, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    12. Lehmann, Paul & Tafarte, Philip, 2023. "The opportunity costs of environmental exclusion zones for renewable energy deployment," UFZ Discussion Papers 2/2023, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    13. Lehmann, Paul & Ammermann, Kathrin & Gawel, Erik & Geiger, Charlotte & Hauck, Jennifer & Heilmann, Jörg & Meier, Jan-Niklas & Ponitka, Jens & Schicketanz, Sven & Stemmer, Boris & Tafarte, Philip & Thr, 2021. "Managing spatial sustainability trade-offs: The case of wind power," Ecological Economics, Elsevier, vol. 185(C).
    14. Jan-Niklas Meier & Paul Lehmann & Bernd Süssmuth & Stephan Wedekind, 2024. "Wind power deployment and the impact of spatial planning policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(2), pages 491-550, February.

  2. Lehmann, Paul & Söderholm, Patrik, 2016. "Can technology-specific deployment policies be cost-effective? The case of renewable energy support schemes," UFZ Discussion Papers 1/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Cited by:

    1. Melliger, Marc & Chappin, Emile, 2022. "Phasing out support schemes for renewables in neighbouring countries: An agent-based model with investment preferences," Applied Energy, Elsevier, vol. 305(C).
    2. Moshe Maor, 2020. "Policy over- and under-design: an information quality perspective," Policy Sciences, Springer;Society of Policy Sciences, vol. 53(3), pages 395-411, September.
    3. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    4. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    5. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    6. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    7. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    8. Mats Kröger & Karsten Neuhoff & Jörn C. Richstein, 2022. "Discriminatory Auction Design for Renewable Energy," Discussion Papers of DIW Berlin 2013, DIW Berlin, German Institute for Economic Research.
    9. Claudia Gutiérrez & Alba de la Vara & Juan Jesús González-Alemán & Miguel Ángel Gaertner, 2021. "Impact of Climate Change on Wind and Photovoltaic Energy Resources in the Canary Islands and Adjacent Regions," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    10. David Popp, 2020. "Promoting Clean Energy Innovation," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(04), pages 30-35, January.
    11. Kim, Jung Eun & Tang, Tian, 2020. "Preventing early lock-in with technology-specific policy designs: The Renewable Portfolio Standards and diversity in renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Ye, Fanglin & Paulson, Nicholas & Khanna, Madhu, 2022. "Are renewable energy policies effective to promote technological change? The role of induced technological risk," Journal of Environmental Economics and Management, Elsevier, vol. 114(C).
    13. Adriana Grigorescu & Victor Raul Lopez Ruiz & Cristina Lincaru & Elena Condrea, 2023. "Specialization Patterns for the Development of Renewable Energy Generation Technologies across Countries," Energies, MDPI, vol. 16(20), pages 1-26, October.
    14. David Popp & Francesco Vona & Myriam Gregoire-Zawilski & Giovanni Marin, 2022. "The Next Wave of Energy Innovation: Which Technologies? Which Skills?," NBER Working Papers 30343, National Bureau of Economic Research, Inc.
    15. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    16. Newell, Richard G. & Pizer, William A. & Raimi, Daniel, 2019. "U.S. federal government subsidies for clean energy: Design choices and implications," Energy Economics, Elsevier, vol. 80(C), pages 831-841.
    17. Germeshausen, Robert, 2018. "Effects of attribute-based regulation on technology adoption: The case of feed-in tariffs for solar photovoltaic," ZEW Discussion Papers 18-057, ZEW - Leibniz Centre for European Economic Research.
    18. Roy Kouwenberg & Chenglong Zheng, 2023. "A Review of the Global Climate Finance Literature," Sustainability, MDPI, vol. 15(2), pages 1-32, January.
    19. Oksana Marinina & Marina Nevskaya & Izabela Jonek-Kowalska & Radosław Wolniak & Mikhail Marinin, 2021. "Recycling of Coal Fly Ash as an Example of an Efficient Circular Economy: A Stakeholder Approach," Energies, MDPI, vol. 14(12), pages 1-21, June.
    20. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    21. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).
    22. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.
    23. Elina Bryngemark & Patrik Söderholm, 2022. "Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 225-261, April.

  3. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Cited by:

    1. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    2. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.

  4. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.

    Cited by:

    1. Wang, Delu & Mao, Jinqi & Cui, Rong & Yu, Jian & Shi, Xunpeng, 2022. "Impact of inter-provincial power resource allocation on enterprise production behavior from a multi-scale correlation perspective," Energy Economics, Elsevier, vol. 114(C).
    2. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    3. Apergis, Nicholas & Ewing, Bradley T. & Payne, James E., 2017. "Introduction: Symposium on Energy Sector Convergence," Energy Economics, Elsevier, vol. 62(C), pages 335-337.
    4. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    5. Tzen-Ying Ling & Wei-Kai Hung & Chun-Tsu Lin & Michael Lu, 2020. "Dealing with Green Gentrification and Vertical Green-Related Urban Well-Being: A Contextual-Based Design Framework," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    6. Payne, James E. & Vizek, Maruška & Lee, Junsoo, 2017. "Is there convergence in per capita renewable energy consumption across U.S. States? Evidence from LM and RALS-LM unit root tests with breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 715-728.
    7. Hongyun Han & Shu Wu, 2018. "Structural Change and Its Impact on the Energy Intensity of Agricultural Sector in China," Sustainability, MDPI, vol. 10(12), pages 1-23, December.
    8. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    9. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    10. Lin, Boqiang & Wang, Miao, 2021. "What drives energy intensity fall in China? Evidence from a meta-frontier approach," Applied Energy, Elsevier, vol. 281(C).
    11. Binbin Yang & Sang-Do Park, 2023. "Who Drives Carbon Neutrality in China? Text Mining and Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    12. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    13. Zha, Jianping & Tan, Ting & Fan, Rong & Xu, Han & Ma, Siqi, 2020. "How to reduce energy intensity to achieve sustainable development of China's transport sector? A cross-regional comparison analysis," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    14. Ivanovski, Kris & Awaworyi Churchill, Sefa & Smyth, Russell, 2018. "A club convergence analysis of per capita energy consumption across Australian regions and sectors," Energy Economics, Elsevier, vol. 76(C), pages 519-531.
    15. Nian Wang & Yingming Zhu & Yu Pei, 2021. "How does economic infrastructure affect industrial energy efficiency convergence? Empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13973-13997, September.
    16. Kuriyama, Akihisa & Tamura, Kentaro & Kuramochi, Takeshi, 2019. "Can Japan enhance its 2030 greenhouse gas emission reduction targets? Assessment of economic and energy-related assumptions in Japan's NDC," Energy Policy, Elsevier, vol. 130(C), pages 328-340.
    17. Shemelis Kebede Hundie & Megersa Debela Daksa, 2019. "Does energy-environmental Kuznets curve hold for Ethiopia? The relationship between energy intensity and economic growth," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-21, December.
    18. Rafael Alvarado & Cristian Ortiz & Lizeth Cuesta & Brayan Tillaguango, 2023. "Spillovers impact of institutional and economic factors in energy intensity," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1805-1823, June.
    19. Wu, Ya & Su, JingRong & Li, Ke & Sun, Chuanwang, 2019. "Comparative study on power efficiency of China's provincial steel industry and its influencing factors," Energy, Elsevier, vol. 175(C), pages 1009-1020.
    20. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    21. Wang, En-Ze & Lee, Chien-Chiang & Li, Yaya, 2022. "Assessing the impact of industrial robots on manufacturing energy intensity in 38 countries," Energy Economics, Elsevier, vol. 105(C).
    22. Jain, Princy & Goswami, Binoy, 2021. "Energy efficiency in South Asia: Trends and determinants," Energy, Elsevier, vol. 221(C).

  5. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).

    Cited by:

    1. Bondarev, Anton & Weigt, Hannes, 2017. "Sensitivity of energy system investments to policy regulation changes: Application of the blue sky catastrophe," Working papers 2017/08, Faculty of Business and Economics - University of Basel.

  6. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2014. "Convergence of carbon dioxide performance across Swedish industrial sectors An environmental index approach," CERE Working Papers 2014:10, CERE - the Center for Environmental and Resource Economics.

    Cited by:

    1. Amjadi, Golnaz & Lundgren, Tommy & Persson, Lars, 2018. "The Rebound Effect in Swedish Heavy Industry," Energy Economics, Elsevier, vol. 71(C), pages 140-148.
    2. Mohammed Kharbach & Adnan Belakhdar & Tarik Chfadi, 2021. "A Growth Curve Model for CO2 Emissions in G19 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 365-368.
    3. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos E., 2023. "Environmental productivity growth across European industries," Energy Economics, Elsevier, vol. 123(C).
    4. Du, Kerui & Li, Jianglong, 2019. "Towards a green world: How do green technology innovations affect total-factor carbon productivity," Energy Policy, Elsevier, vol. 131(C), pages 240-250.
    5. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    6. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
    7. Prantik Bagchi & Santosh Kumar Sahu & Ajay Kumar & Kim Hua Tan, 2022. "Analysis of carbon productivity for firms in the manufacturing sector of India," Post-Print hal-03628401, HAL.
    8. Apergis, Nicholas & Payne, James E., 2017. "Per capita carbon dioxide emissions across U.S. states by sector and fossil fuel source: Evidence from club convergence tests," Energy Economics, Elsevier, vol. 63(C), pages 365-372.
    9. Brännlund, Runar & Karimu, Amin & Söderholm, Patrik, 2014. "Convergence in carbon dioxide emissions and the role of growth and institutions A parametric and nonparametric analysis," CERE Working Papers 2014:12, CERE - the Center for Environmental and Resource Economics.
    10. Acar, Sevil & Yeldan, A. Erinç, 2018. "Investigating patterns of carbon convergence in an uneven economy: The case of Turkey," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 96-106.
    11. Huiming Xie & Xiaopeng Wang & Manhong Shen & Chu Wei, 2022. "Abatement costs of combatting industrial water pollution: convergence across Chinese provinces," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10752-10767, September.
    12. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    13. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    14. Tan, Ruipeng & Pan, Lulu & Xu, Mengmeng & He, Xinju, 2022. "Transportation infrastructure, economic agglomeration and non-linearities of green total factor productivity growth in China: Evidence from partially linear functional coefficient model," Transport Policy, Elsevier, vol. 129(C), pages 1-13.
    15. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    16. Runar Brännlund & Amin Karimu, 2018. "Convergence in global environmental performance: assessing heterogeneity," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(3), pages 503-526, July.
    17. Shiwei Yu & Xing Hu & Xuejiao Zhang & Zhenxi Li, 2019. "Convergence of per capita carbon emissions in the Yangtze River Economic Belt, China," Energy & Environment, , vol. 30(5), pages 776-799, August.
    18. Yan, Zheming & Zou, Baoling & Du, Kerui & Li, Ke, 2020. "Do renewable energy technology innovations promote China's green productivity growth? Fresh evidence from partially linear functional-coefficient models," Energy Economics, Elsevier, vol. 90(C).
    19. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
    20. Stergiou, Eirini & Rigas, Nikos & Kounetas, Konstantinos, 2021. "Environmental Productivity and Convergence of European Manufacturing Industries. Are they Under Pressure?," MPRA Paper 110780, University Library of Munich, Germany.
    21. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    22. Grafström, Jonas & Söderholm, Patrik & Gawel, Erik & Lehmann, Paul & Strunz, Sebastian, 2017. "Knowledge accumulation from public renewable energy R&D in the European Union: Converging or diverging trends?," UFZ Discussion Papers 5/2017, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    23. Meng Sun & Yue Zhang & Yaqi Hu & Jiayi Zhang, 2022. "Spatial Convergence of Carbon Productivity: Theoretical Analysis and Chinese Experience," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    24. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.

  7. Brännlund, Runar & Karimu, Amin & Söderholm, Patrik, 2014. "Convergence in carbon dioxide emissions and the role of growth and institutions A parametric and nonparametric analysis," CERE Working Papers 2014:12, CERE - the Center for Environmental and Resource Economics.

    Cited by:

    1. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    2. Bali Swain, Ranjula & Kambhampati, Uma S. & Karimu, Amin, 2020. "Regulation, governance and the role of the informal sector in influencing environmental quality?," Ecological Economics, Elsevier, vol. 173(C).
    3. Sanchez, Luis F. & Stern, David I., 2016. "Drivers of industrial and non-industrial greenhouse gas emissions," Ecological Economics, Elsevier, vol. 124(C), pages 17-24.
    4. Yunpeng Sun & Asif Razzaq, 2022. "Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 944-957, October.
    5. Nusrate Aziz & Belayet Hossain & Laura Lamb, 2022. "Does green policy pay dividends?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 147-172, April.
    6. Silvapulle, Param & Smyth, Russell & Zhang, Xibin & Fenech, Jean-Pierre, 2017. "Nonparametric panel data model for crude oil and stock market prices in net oil importing countries," Energy Economics, Elsevier, vol. 67(C), pages 255-267.
    7. Atwi, Majed & Barberán, Ramón & Mur, Jesús & Angulo, Ana, 2018. "CO2 Kuznets Curve Revisited: From Cross-Sections to Panel Data Models," INVESTIGACIONES REGIONALES - Journal of REGIONAL RESEARCH, Asociación Española de Ciencia Regional, issue 40, pages 169-196.
    8. Meng-Shiuh Chang & Chih-Chun Kung, 2018. "The greenhouse gas impact of bioenergy in developing economies: Evidence from Taiwan," Energy & Environment, , vol. 29(3), pages 315-332, May.
    9. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    10. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).

  8. Riekkola, Anna Krook & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2013. "Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden," Working Papers 133, National Institute of Economic Research.

    Cited by:

    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    3. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    4. Al-Riffai, Perrihan & Breisinger, Clemens & Mondal, Md. Hossain Alam & Ringler, Claudia & Wiebelt, Manfred & Zhu, Tingju, 2017. "Linking the economics of water, energy, and food: A nexus modeling approach," MENA working papers 4, International Food Policy Research Institute (IFPRI).
    5. Mertens, Tim & Poncelet, Kris & Duerinck, Jan & Delarue, Erik, 2020. "Representing cross-border trade of electricity in long-term energy-system optimization models with a limited geographical scope," Applied Energy, Elsevier, vol. 261(C).
    6. García-Gusano, Diego & Garraín, Daniel & Dufour, Javier, 2017. "Prospective life cycle assessment of the Spanish electricity production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 21-34.
    7. Maria Ljunggren Söderman & Ola Eriksson & Anna Björklund & Göran Östblom & Tomas Ekvall & Göran Finnveden & Yevgeniya Arushanyan & Jan-Olov Sundqvist, 2016. "Integrated Economic and Environmental Assessment of Waste Policy Instruments," Sustainability, MDPI, vol. 8(5), pages 1-21, April.
    8. Sophie Maire & Philippe Thalmann & Frank Vöhringer, 2019. "Welfare effects of technology-based climate policies in liberalized electricity markets: seeing beyond total system cost," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-12, December.
    9. Khan, Zarrar & Linares, Pedro & Rutten, Martine & Parkinson, Simon & Johnson, Nils & García-González, Javier, 2018. "Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning," Applied Energy, Elsevier, vol. 210(C), pages 499-517.

  9. Brännlund, Runar & Karimu, Amin & Söderholm, Patrik, 2012. "Elmarknaden och elprisets utveckling före och efter avregleringen: ekonometriska analyser," CERE Working Papers 2012:14, CERE - the Center for Environmental and Resource Economics.

    Cited by:

    1. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    2. Schusser, Sandra & Jaraite, Jurate, 2016. "Explaining the Interplay of Three Markets: Green Certificates, Carbon Emissions and Electricity," CERE Working Papers 2016:10, CERE - the Center for Environmental and Resource Economics.
    3. Andreas Bergh, 2014. "Sweden and the Revival of the Capitalist Welfare State," Books, Edward Elgar Publishing, number 15717.
    4. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    5. Lanot, Gauthier & Vesterberg, Mattias, 2017. "An empirical model of the decision to switch between electricity price contracts," Umeå Economic Studies 951, Umeå University, Department of Economics.
    6. Niklas, Rudholm, 2015. "Pricing in the Swedish Retail Market for Electricity," HUI Working Papers 113, HUI Research.
    7. Macuchova, Zuzana & Rudholm, Niklas & Tang, Aili, 2014. "Firm growth in the Swedish energy sector: Will large firms become even more dominant?," HUI Working Papers 104, HUI Research.

Articles

  1. Bryngemark, Elina & Söderholm, Patrik & Thörn, Martina, 2023. "The adoption of green public procurement practices: Analytical challenges and empirical illustration on Swedish municipalities," Ecological Economics, Elsevier, vol. 204(PA).

    Cited by:

    1. Rosalba D’Onofrio & Chiara Camaioni & Stefano Mugnoz, 2023. "Local Climate Adaptation and Governance: The Utility of Joint SECAP Plans for Networks of Small–Medium Italian Municipalities," Sustainability, MDPI, vol. 15(11), pages 1-20, May.

  2. Hedeler, Barbara & Hellsmark, Hans & Söderholm, Patrik, 2023. "Policy mixes and policy feedback: Implications for green industrial growth in the Swedish biofuels industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Cited by:

    1. Zhang, Shouguo & Zhang, Jianjun & Sha, Anmeng & Zhang, Yaping & Zhang, Di, 2023. "How to recognize the role of policy clusters in built-up land intensity: An empirical case of the Yangtze River Economic Belt of China," Land Use Policy, Elsevier, vol. 134(C).

  3. Jonas Grafström & Patrik Söderholm & Erik Gawel & Paul Lehmann & Sebastian Strunz, 2023. "Government support to renewable energy R&D: drivers and strategic interactions among EU Member States," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 32(1), pages 1-24, January.

    Cited by:

    1. José Castro Oliveira & Manuel Carlos Nogueira & Mara Madaleno, 2023. "Do the Reduction of Traditional Energy Consumption and the Acceleration of the Energy Transition Bring Economic Benefits to South America?," Energies, MDPI, vol. 16(14), pages 1-15, July.
    2. Mara Madaleno & Manuel Carlos Nogueira, 2023. "How Renewable Energy and CO 2 Emissions Contribute to Economic Growth, and Sustainability—An Extensive Analysis," Sustainability, MDPI, vol. 15(5), pages 1-15, February.

  4. Elina Bryngemark & Patrik Söderholm, 2022. "Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 225-261, April.

    Cited by:

    1. Lundberg, Liv & Cintas Sanchez, Olivia & Zetterholm, Jonas, 2023. "The impact of blending mandates on biofuel consumption, production, emission reductions and fuel prices," Energy Policy, Elsevier, vol. 183(C).
    2. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).

  5. Patrik Söderholm & Ann-Kristin Bergquist & Maria Pettersson & Kristina Söderholm, 2022. "The political economy of industrial pollution control: environmental regulation in Swedish industry for five decades," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 65(6), pages 1056-1087, May.

    Cited by:

    1. Söderholm, Patrik, 2023. "How environmental permitting uncertainty in large-scale mining could influence subcontractors: The underlying chicken-and-egg problem," Resources Policy, Elsevier, vol. 82(C).

  6. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.

    Cited by:

    1. Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
    2. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    3. Khan, Feroz & Ali, Yousaf, 2022. "Moving towards a sustainable circular bio-economy in the agriculture sector of a developing country," Ecological Economics, Elsevier, vol. 196(C).
    4. Kim, Sojung & Kim, Sumin, 2022. "Hybrid simulation framework for the production management of an ethanol biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Gayathri Priya Iragavarapu & Syed Shahed Imam & Omprakash Sarkar & Srinivasula Venkata Mohan & Young-Cheol Chang & Motakatla Venkateswar Reddy & Sang-Hyoun Kim & Naresh Kumar Amradi, 2023. "Bioprocessing of Waste for Renewable Chemicals and Fuels to Promote Bioeconomy," Energies, MDPI, vol. 16(9), pages 1-24, May.
    6. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    7. Weiwei Wang, 2023. "Integrated Assessment of Economic Supply and Environmental Effects of Biomass Co-Firing in Coal Power Plants: A Case Study of Jiangsu, China," Energies, MDPI, vol. 16(6), pages 1-22, March.
    8. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).
    9. Knápek, J. & Králík, T. & Vávrová, K. & Valentová, M. & Horák, M. & Outrata, D., 2021. "Policy implications of competition between conventional and energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

  7. Thomas Lauf & Kristina Ek & Erik Gawel & Paul Lehmann & Patrik Söderholm, 2020. "The regional heterogeneity of wind power deployment: an empirical investigation of land-use policies in Germany and Sweden," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 63(4), pages 751-778, March.
    See citations under working paper version above.
  8. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.

    Cited by:

    1. Adam Jakubas & Ewa Łada-Tondyra & Marcin Makówka & Łukasz Suchecki, 2022. "A Study on the Possibility of Using Iron Scale in the Construction of Electromagnetic Field Shields," Energies, MDPI, vol. 15(4), pages 1-18, February.
    2. de la Torre de Palacios, Luis & Espí Rodríguez, José Antonio, 2022. "In mining, not everything is a circular economy: Case studies from recent mining projects in Iberia," Resources Policy, Elsevier, vol. 78(C).
    3. Jenna N. Trost & Jennifer B. Dunn, 2023. "Assessing the feasibility of the Inflation Reduction Act’s EV critical mineral targets," Nature Sustainability, Nature, vol. 6(6), pages 639-643, June.

  9. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.

    Cited by:

    1. Farrukh, Clare & Holgado, Maria, 2020. "Integrating sustainable value thinking into technology forecasting: A configurable toolset for early stage technology assessment," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    2. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Kimpimäki, Jaan-Pauli & Malacina, Iryna & Lähdeaho, Oskari, 2022. "Open and sustainable: An emerging frontier in innovation management?," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Jhon Wilder Zartha Sossa & Oscar Hernán López Montoya & Julio Cesar Acosta Prado, 2021. "Determinants of a sustainable innovation system," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1345-1356, February.
    5. Woo Jin Lee & Rose Mwebaza, 2020. "The Role of the Climate Technology Centre and Network as a Climate Technology and Innovation Matchmaker for Developing Countries," Sustainability, MDPI, vol. 12(19), pages 1-16, September.
    6. Lin, Runhui & Lu, Yanhong & Zhou, Cheng & Li, Biting, 2022. "Rethinking individual technological innovation: Cooperation network stability and the contingent effect of knowledge network attributes," Journal of Business Research, Elsevier, vol. 144(C), pages 366-376.
    7. Landoni, Matteo & ogilvie, dt, 2019. "Convergence of innovation policies in the European aerospace industry (1960–2000)," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 174-184.
    8. Rodrigo, L. & Palacios, M., 2021. "What antecedent attitudes motivate actors to commit to the ecosystem of digital social innovation?," Technological Forecasting and Social Change, Elsevier, vol. 162(C).
    9. Bjerkan, Kristin Ystmark & Ryghaug, Marianne, 2021. "Diverging pathways to port sustainability: How social processes shape and direct transition work," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    10. Lina Mao & Jinghua Li & Changwei Guo, 2019. "Integrator’s Coordination on Technological Innovation Performance in China: The Dual Moderating Role of Environmental Dynamism," Sustainability, MDPI, vol. 12(1), pages 1-24, December.
    11. Falcone, Pasquale Marcello & Lopolito, Antonio & Sica, Edgardo, 2019. "Instrument mix for energy transition: A method for policy formulation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    12. Yu-Sheng Kao & Kazumitsu Nawata & Chi-Yo Huang, 2019. "Evaluating the Performance of Systemic Innovation Problems of the IoT in Manufacturing Industries by Novel MCDM Methods," Sustainability, MDPI, vol. 11(18), pages 1-33, September.
    13. Asef Karimi & Haniye Rezaei & Morteza Akbari & Pantea Foroudi, 2021. "The concept of innovation network: an application of the meta-synthesis approach," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 11(1), pages 399-419, December.
    14. Rosamartina, Schena & Giustina, Secundo & Domenico, De Fano & Pasquale, Del Vecchio & Angeloantonio, Russo, 2022. "Digital reputation and firm performance: The moderating role of firm orientation towards sustainable development goals (SDGs)," Journal of Business Research, Elsevier, vol. 152(C), pages 315-325.
    15. Jing Huang & Hongqi Wang & Jianlong Wu & Zhongji Yang & Xiaobo Hu & Mengmeng Bao, 2020. "Exploring the Key Driving Forces of the Sustainable Intergenerational Evolution of the Industrial Alliance Innovation Ecosystem: Evidence from a Case Study of China’s TDIA," Sustainability, MDPI, vol. 12(4), pages 1-31, February.
    16. Rohe, Sebastian & Chlebna, Camilla, 2022. "The evolving role of networking organizations in advanced sustainability transitions," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    17. Liang, Liang & Alam, Ashraful & Sorwar, Ghulam & Yazdifar, Hassan & Eskandari, Rasol, 2021. "The combined network effect of sparse and interlocked connections in SMEs’ innovation," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    18. Oleg S. Sukharev, 2021. "Functional approach in decision-making: Dysfunction and efficiency of rules and systems," Upravlenets, Ural State University of Economics, vol. 12(1), pages 2-17, March.
    19. Guo, Taolei & Liu, Pei & Wang, Chao & Xie, Jingci & Du, Jianbang & Lim, Ming K., 2023. "Toward sustainable port-hinterland transportation: A holistic approach to design modal shift policy mixes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    20. Elina Bryngemark & Patrik Söderholm, 2022. "Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 225-261, April.

  10. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.

    Cited by:

    1. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    2. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    3. Su, Chi-Wei & Khan, Khalid & Umar, Muhammad & Chang, Tsangyao, 2022. "Renewable energy in prism of technological innovation and economic uncertainty," Renewable Energy, Elsevier, vol. 189(C), pages 467-478.
    4. Khan, Khalid & Su, Chi Wei & Rehman, Ashfaq U. & Ullah, Rahman, 2022. "Is technological innovation a driver of renewable energy?," Technology in Society, Elsevier, vol. 70(C).
    5. David Popp, 2020. "Promoting Clean Energy Innovation," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 17(04), pages 30-35, January.
    6. George Halkos & Antonis Skouloudis, 2021. "Environmental technology development and diffusion: panel data evidence from 56 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 79-92, January.
    7. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    8. Samant, Shantala & Thakur-Wernz, Pooja & Hatfield, Donald E., 2020. "Does the focus of renewable energy policy impact the nature of innovation? Evidence from emerging economies," Energy Policy, Elsevier, vol. 137(C).
    9. Guendalina Anzolin & Amir Lebdioui, 2021. "Three Dimensions of Green Industrial Policy in the Context of Climate Change and Sustainable Development," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 33(2), pages 371-405, April.
    10. Hu, Xing & Yu, Shiwei & Fang, Xu & Ovaere, Marten, 2023. "Which combinations of renewable energy policies work better? Insights from policy text synergies in China," Energy Economics, Elsevier, vol. 127(PA).
    11. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    12. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.

  11. Johan Frishammar & Patrik Söderholm & Hans Hellsmark & Johanna Mossberg, 2019. "A knowledge-based perspective on system weaknesses in technological innovation systems," Science and Public Policy, Oxford University Press, vol. 46(1), pages 55-70.

    Cited by:

    1. Gama, Fábio & Sjödin, David & Parida, Vinit & Frishammar, Johan & Wincent, Joakim, 2022. "Exploratory and exploitative capability paths for innovation: A contingency framework for harnessing fuzziness in the front end," Technovation, Elsevier, vol. 113(C).

  12. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.

    Cited by:

    1. Grzegorz Zimon & Marek Sobolewski & Grzegorz Lew, 2020. "An Influence of Group Purchasing Organizations on Financial Security of SMEs Operating in the Renewable Energy Sector—Case for Poland," Energies, MDPI, vol. 13(11), pages 1-17, June.
    2. Grzegorz Zimon, 2020. "Financial Liquidity Management Strategies in Polish Energy Companies," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 365-368.
    3. Mulualem G. Gebreslassie, 2022. "Comparative assessment of the challenges faced by the solar energy industry in Ethiopia before and during the COVID‐19 pandemic," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(2), March.

  13. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.

    Cited by:

    1. Baumann, Manuel & Domnik, Tobias & Haase, Martina & Wulf, Christina & Emmerich, Philip & Rösch, Christine & Zapp, Petra & Naegler, Tobias & Weil, Marcel, 2021. "Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    2. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Delanote, Julie & Rückert, Désirée, 2022. "How to foster climate innovation in the European Union: Insights from the EIB Online Survey on Climate Innovation," EIB Working Papers 2022/02, European Investment Bank (EIB).
    4. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

  14. Olle Hage & Krister Sandberg & Patrik Söderholm & Christer Berglund, 2018. "The regional heterogeneity of household recycling: a spatial-econometric analysis of Swedish plastic packing waste," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 245-267, October.

    Cited by:

    1. Mats Wilhelmsson, 2022. "About the Importance of Planning the Location of Recycling Stations in the Urban Context," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Jinhui Liu & Qing Li & Wei Gu & Chen Wang, 2019. "The Impact of Consumption Patterns on the Generation of Municipal Solid Waste in China: Evidences from Provincial Data," IJERPH, MDPI, vol. 16(10), pages 1-19, May.
    3. Cerqueira, Pedro A. & Soukiazis, Elias, 2022. "Socio-economic and political factors affecting the rate of recycling in Portuguese municipalities," Economic Modelling, Elsevier, vol. 108(C).
    4. Romano, Giulia & Molinos-Senante, María & Carosi, Laura & Llanquileo-Melgarejo, Paula & Sala-Garrido, Ramón & Mocholi-Arce, Manuel, 2021. "Assessing the dynamic eco-efficiency of Italian municipalities by accounting for the ownership of the entrusted waste utilities," Utilities Policy, Elsevier, vol. 73(C).
    5. Liangjun Peng & Mengdi Gu & Zhijun Peng, 2020. "Study on the Optimized Mode of Waste Governance with Sustainable Urban Development—Case from China’s Urban Waste Classified Collection," Sustainability, MDPI, vol. 12(9), pages 1-12, May.
    6. Kristyna Rybova, 2019. "Do Sociodemographic Characteristics in Waste Management Matter? Case Study of Recyclable Generation in the Czech Republic," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    7. Liange Zhao & Jianfeng Zou & Zhijian Zhang, 2020. "Does China’s Municipal Solid Waste Source Separation Program Work? Evidence from the Spatial-Two-Stage-Least Squares Models," Sustainability, MDPI, vol. 12(4), pages 1-20, February.
    8. Elena Borasino & Hanna Fuhrmann-Riebel, 2022. "New Kids on the Recycling Block: the Role of Supermarkets and Bodegas for Sustainable Consumer Behaviour in Lima," Circular Economy and Sustainability,, Springer.
    9. Coralie Hellwig & Greta Häggblom-Kronlöf & Kim Bolton & Kamran Rousta, 2019. "Household Waste Sorting and Engagement in Everyday Life Occupations After Migration—A Scoping Review," Sustainability, MDPI, vol. 11(17), pages 1-29, August.

  15. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
    See citations under working paper version above.
  16. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2018. "Policy convergence as a multifaceted concept: the case of renewable energy policies in the European Union," Journal of Public Policy, Cambridge University Press, vol. 38(3), pages 361-387, September.

    Cited by:

    1. Mateusz Jankiewicz, 2021. "The Convergence of Energy Use from Renewable Sources in the European Countries: Spatio-Temporal Approach," Energies, MDPI, vol. 14(24), pages 1-15, December.
    2. Chen, Ting & Vandendriessche, Frederik, 2023. "Evolution of the EU legal framework for promoting RES-E: A market compatible paradigm shift?," Utilities Policy, Elsevier, vol. 83(C).
    3. Strunz, Sebastian & Lehmann, Paul & Gawel, Erik, 2021. "Analyzing the ambitions of renewable energy policy in the EU and its Member States," Energy Policy, Elsevier, vol. 156(C).

  17. Sevil Acar & Patrik Söderholm & Runar Brännlund, 2018. "Convergence of per capita carbon dioxide emissions: implications and meta-analysis," Climate Policy, Taylor & Francis Journals, vol. 18(4), pages 512-525, April.

    Cited by:

    1. Claire Alestra & Gilbert Cette & Valérie Chouard & Rémy Lecat, 2023. "How Can Technology Significantly Contribute to Climate Change Mitigation?," Working papers 909, Banque de France.
    2. Parker, Steven & Bhatti, M. Ishaq, 2020. "Dynamics and drivers of per capita CO2 emissions in Asia," Energy Economics, Elsevier, vol. 89(C).
    3. Lijie Gao & Xiaoqi Shang & Fengmei Yang & Longyu Shi, 2021. "A Dynamic Benchmark System for Per Capita Carbon Emissions in Low-Carbon Counties of China," Energies, MDPI, vol. 14(3), pages 1-16, January.
    4. Martin Kesternich & Andreas Löschel & Andreas Ziegler, 2021. "Negotiating weights for burden sharing rules in international climate negotiations: an empirical analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(2), pages 309-331, April.
    5. Acar, Sevil & Yeldan, A. Erinç, 2018. "Investigating patterns of carbon convergence in an uneven economy: The case of Turkey," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 96-106.
    6. de Lucas-Santos, Sonia & Delgado-Rodríguez, María Jesús & Cabezas-Ares, Alfredo, 2021. "Cyclical convergence in per capita carbon dioxide emission in US states: A dynamic unobserved component approach," Energy, Elsevier, vol. 217(C).
    7. Nicholas Apergis & James E. Payne, 2020. "NAFTA and the convergence of CO2 emissions intensity and its determinants," International Economics, CEPII research center, issue 161, pages 1-9.
    8. Xiao Zhang & Shengchao Ye & Manhong Shen, 2023. "Driving Factors and Spatiotemporal Characteristics of CO 2 Emissions from Marine Fisheries in China: A Commonly Neglected Carbon-Intensive Sector," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    9. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    10. Fan Yang & Yongrok Choi & Hyoungsuk Lee, 2021. "Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    11. Menegaki, Angeliki N. & Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Naz, Amber, 2021. "The convergence in various dimensions of energy-economy-environment linkages: A comprehensive citation-based systematic literature review," Energy Economics, Elsevier, vol. 104(C).
    12. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    13. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    14. UÄŸur UrsavaÅŸ & Veli Yilanci, 2023. "Convergence analysis of ecological footprint at different time scales: Evidence from Southern Common Market countries," Energy & Environment, , vol. 34(2), pages 429-442, March.
    15. Belloc, Ignacio & Molina, José Alberto, 2022. "Are greenhouse gas emissions converging in Latin America?," GLO Discussion Paper Series 1037, Global Labor Organization (GLO).
    16. Veli Yilanci & Muhammed Sehid Gorus & Sakiru Adebola Solarin, 2022. "Convergence in per capita carbon footprint and ecological footprint for G7 countries: Evidence from panel Fourier threshold unit root test," Energy & Environment, , vol. 33(3), pages 527-545, May.
    17. Payne, James E. & Lee, Junsoo & Islam, Md. Towhidul & Nazlioglu, Saban, 2022. "Stochastic convergence of per capita greenhouse gas emissions: New unit root tests with breaks and a factor structure," Energy Economics, Elsevier, vol. 113(C).
    18. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).

  18. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2017. "Energy intensity and convergence in Swedish industry: A combined econometric and decomposition analysis," Energy Economics, Elsevier, vol. 62(C), pages 347-356.
    See citations under working paper version above.
  19. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.

    Cited by:

    1. Aquila, Giancarlo & Coelho, Eden de Oliveira Pinto & Bonatto, Benedito Donizeti & Pamplona, Edson de Oliveira & Nakamura, Wilson Toshiro, 2021. "Perspective of uncertainty and risk from the CVaR-LCOE approach: An analysis of the case of PV microgeneration in Minas Gerais, Brazil," Energy, Elsevier, vol. 226(C).
    2. Hitaj, Claudia & Schymura, Michael & Löschel, Andreas, 2014. "The impact of a feed-in tariff on wind power development in Germany," ZEW Discussion Papers 14-035, ZEW - Leibniz Centre for European Economic Research.
    3. Justyna Godawska & Joanna Wyrobek, 2021. "The Impact of Environmental Policy Stringency on Renewable Energy Production in the Visegrad Group Countries," Energies, MDPI, vol. 14(19), pages 1-23, September.
    4. Vazquez, Miguel & Hallack, Michelle, 2018. "The role of regulatory learning in energy transition: The case of solar PV in Brazil," Energy Policy, Elsevier, vol. 114(C), pages 465-481.
    5. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    6. Omri Carmon & Itay Fischhendler, 2021. "A friction perspective for negotiating renewable energy targets: the Israeli case," Policy Sciences, Springer;Society of Policy Sciences, vol. 54(2), pages 313-344, June.
    7. Yu, Chin-Hsien & Wu, Xiuqin & Lee, Wen-Chieh & Zhao, Jinsong, 2021. "Resource misallocation in the Chinese wind power industry: The role of feed-in tariff policy," Energy Economics, Elsevier, vol. 98(C).
    8. Engelhorn, Thorsten & Müsgens, Felix, 2021. "Why is Germany’s energy transition so expensive? Quantifying the costs of wind-energy decentralisation," Resource and Energy Economics, Elsevier, vol. 65(C).
    9. Lehmann, Paul & Söderholm, Patrik, 2016. "Can technology-specific deployment policies be cost-effective? The case of renewable energy support schemes," UFZ Discussion Papers 1/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    10. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    11. Svetlana Ratner & Konstantin Gomonov & Svetlana Revinova & Inna Lazanyuk, 2020. "Energy Saving Potential of Industrial Solar Collectors in Southern Regions of Russia: The Case of Krasnodar Region," Energies, MDPI, vol. 13(4), pages 1-19, February.
    12. Kwon, Tae-hyeong, 2018. "Policy synergy or conflict for renewable energy support: Case of RPS and auction in South Korea," Energy Policy, Elsevier, vol. 123(C), pages 443-449.
    13. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    14. Eyerer, S. & Schifflechner, C. & Hofbauer, S. & Bauer, W. & Wieland, C. & Spliethoff, H., 2020. "Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Schmidt, Tobias S. & Sewerin, Sebastian, 2019. "Measuring the temporal dynamics of policy mixes – An empirical analysis of renewable energy policy mixes’ balance and design features in nine countries," Research Policy, Elsevier, vol. 48(10).

  20. Brännlund Runar & Karimu Amin & Söderholm Patrik, 2017. "Convergence in carbon dioxide emissions and the role of growth and institutions: a parametric and non-parametric analysis," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 359-390, April.
    See citations under working paper version above.
  21. Thomas Moritz & Thomas Ejdemo & Patrik Söderholm & Linda Wårell, 2017. "The local employment impacts of mining: an econometric analysis of job multipliers in northern Sweden," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(1), pages 53-65, April.

    Cited by:

    1. Weldegiorgis, Fitsum S. & Dietsche, Evelyn & Franks, Daniel M., 2021. "Building mining's economic linkages: A critical review of local content policy theory," Resources Policy, Elsevier, vol. 74(C).
    2. Lopes, Alef & Ruiz, Ricardo & Ribeiro, Rafael & Cantelmo, Weslley, 2023. "Linkages in the metal mining industry: Local job multipliers in Brazil," Resources Policy, Elsevier, vol. 82(C).
    3. Sanfo, Jean-Baptiste M.B., 2021. "Connecting family, school, gold mining community and primary school students’ reading achievements in Burkina Faso – A three-level hierarchical linear model analysis," International Journal of Educational Development, Elsevier, vol. 84(C).
    4. Ryan D. Bergstrom & Afton Clarke-Sather, 2020. "Balancing Socio-Ecological Risks, Politics, and Identity: Sustainability in Minnesota’s Copper-Nickel-Precious Metal Mining Debate," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    5. Jan Frankowski & Joanna Mazurkiewicz & Jakub Sokołowski, 2022. "Mapping the indirect employment of hard coal mining: a case study of Upper Silesia, Poland," IBS Working Papers 07/2022, Instytut Badan Strukturalnych.
    6. Gai, Zhiqiang & Guo, Yunxia & Hao, Yu, 2022. "Can internet development help break the resource curse? Evidence from China," Resources Policy, Elsevier, vol. 75(C).
    7. Nam Foo & Ruhul Salim, 2022. "The evolution of mining employment during the resource boom and bust cycle in Australia," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(2), pages 309-324, June.
    8. Frankowski, Jan & Mazurkiewicz, Joanna & Sokołowski, Jakub, 2023. "Mapping the indirect employment of hard coal mining: A case study of Upper Silesia, Poland," Resources Policy, Elsevier, vol. 83(C).
    9. Rahul Govind Pramani & Sandeep Goel & Rupamanjari Sinha Ray & A. Sarath Babu, 2023. "Corporate governance practices in the mining industry of India: an application of CG index," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 481-498, September.
    10. Söderholm, Patrik, 2023. "How environmental permitting uncertainty in large-scale mining could influence subcontractors: The underlying chicken-and-egg problem," Resources Policy, Elsevier, vol. 82(C).
    11. Omotehinse, Adeyinka O. & De Tomi, Giorgio, 2020. "Managing the challenges of obtaining a social license to operate in the pre-mining phase: A focus on the oil sands communities in Ondo State, Nigeria," World Development Perspectives, Elsevier, vol. 18(C).

  22. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.

    Cited by:

    1. Avraam, Charalampos & Bistline, John E.T. & Brown, Maxwell & Vaillancourt, Kathleen & Siddiqui, Sauleh, 2021. "North American natural gas market and infrastructure developments under different mechanisms of renewable policy coordination," Energy Policy, Elsevier, vol. 148(PB).
    2. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    3. Song, Siming & Li, Tianxiao & Liu, Pei & Li, Zheng, 2022. "The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China," Energy, Elsevier, vol. 238(PC).
    4. Delzeit, Ruth & Beach, Robert & Bibas, Ruben & Britz, Wolfgang & Chateau, Jean & Freund, Florian & Lefevre, Julien & Schuenemann, Franziska & Sulser, Timothy & Valin, Hugo & van Ruijven, Bas & Weitzel, 2020. "Linking Global CGE models with Sectoral Models to Generate Baseline Scenarios: Approaches, Challenges, and Opportunities," Open Access Publications from Kiel Institute for the World Economy 228648, Kiel Institute for the World Economy (IfW Kiel).
    5. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    6. Millot, Ariane & Krook-Riekkola, Anna & Maïzi, Nadia, 2020. "Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden," Energy Policy, Elsevier, vol. 139(C).
    7. Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
    8. Lei Wen & Anqi Wang, 2023. "System dynamics model of Beijing urban public transport carbon emissions based on carbon neutrality target," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12681-12706, November.
    9. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Guo, Siyue & Yan, Da & Hu, Shan & Zhang, Yang, 2021. "Modelling building energy consumption in China under different future scenarios," Energy, Elsevier, vol. 214(C).
    11. Pavičević, Matija & Mangipinto, Andrea & Nijs, Wouter & Lombardi, Francesco & Kavvadias, Konstantinos & Jiménez Navarro, Juan Pablo & Colombo, Emanuela & Quoilin, Sylvain, 2020. "The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models," Applied Energy, Elsevier, vol. 267(C).
    12. Fattahi, Amirhossein & Reynès, Frédéric & van der Zwaan, Bob & Sijm, Jos & Faaij, André, 2023. "Soft-linking a national computable general equilibrium model (ThreeME) with a detailed energy system model (IESA-Opt)," Energy Economics, Elsevier, vol. 123(C).
    13. Gjorgiev, Blazhe & Garrison, Jared B. & Han, Xuejiao & Landis, Florian & van Nieuwkoop, Renger & Raycheva, Elena & Schwarz, Marius & Yan, Xuqian & Demiray, Turhan & Hug, Gabriela & Sansavini, Giovanni, 2022. "Nexus-e: A platform of interfaced high-resolution models for energy-economic assessments of future electricity systems," Applied Energy, Elsevier, vol. 307(C).
    14. Fabian Scheller & Frauke Wiese & Jann Michael Weinand & Dominik Franjo Dominkovi'c & Russell McKenna, 2021. "An expert survey to assess the current status and future challenges of energy system analysis," Papers 2106.15518, arXiv.org.
    15. Shahriyar Nasirov & Raúl O’Ryan & Héctor Osorio, 2020. "Decarbonization Tradeoffs: A Dynamic General Equilibrium Modeling Analysis for the Chilean Power Sector," Sustainability, MDPI, vol. 12(19), pages 1-19, October.
    16. Golombek, Rolf & Lind, Arne & Ringkjøb, Hans-Kristian & Seljom, Pernille, 2022. "The role of transmission and energy storage in European decarbonization towards 2050," Energy, Elsevier, vol. 239(PC).
    17. Ruth Delzeit & Roberto Beach & Ruben Bibas & Wolfgang Britz & Jean Chateau & Florian Freund & Julien Lefevre & Franziska Schuenemann & Timothy Sulser & Hugo Valin & Bas van Ruijven & Matthias Weitzel , 2020. "Linking global CGE models with sectoral models to generate baseline scenarios: Approaches, opportunities and pitfalls," Post-Print hal-03128285, HAL.
    18. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).
    19. Lekavičius, Vidas & Galinis, Arvydas & Miškinis, Vaclovas, 2019. "Long-term economic impacts of energy development scenarios: The role of domestic electricity generation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Taran Fæhn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa &, 2020. "Capturing Key Energy and Emission Trends in CGE models. Assessment of Status and Remaining Challenges," Discussion Papers 936, Statistics Norway, Research Department.
    21. Hanna, Richard & Gross, Robert, 2021. "How do energy systems model and scenario studies explicitly represent socio-economic, political and technological disruption and discontinuity? Implications for policy and practitioners," Energy Policy, Elsevier, vol. 149(C).
    22. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    23. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    24. Alabi, Oluwafisayo & Turner, Karen & Katris, Antonios & Calvillo, Christian, 2022. "Can network spending to support the shift to electric vehicles deliver wider economy gains? The role of domestic supply chain, price, and real wage effects," Energy Economics, Elsevier, vol. 110(C).
    25. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    26. Ahmadi, Somayeh & Saboohi, Yadollah & Vakili, Ali, 2021. "Frameworks, quantitative indicators, characters, and modeling approaches to analysis of energy system resilience: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    27. Shayma Al Bannay & Satoshi Takizawa, 2022. "Decoupling of Water Production and Electricity Generation from GDP and Population in the Gulf Cooperation Council (GCC) Countries," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    28. Olegs Krasnopjorovs & Daniels Jukna & Konstantins Kovalovs, 2022. "On the Use of General Equilibrium Model to Assess the Impact of Climate Policy in Latvia," Post-Print hal-03861139, HAL.
    29. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    30. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    31. Andrea M. Bassi & Valeria Costantini & Elena Paglialunga, 2021. "Modelling the European Union Sustainability Transition: A Soft-Linking Approach," Sustainability, MDPI, vol. 13(11), pages 1-24, June.
    32. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    33. Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
    34. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    35. Xin Su & Frédéric Ghersi & Fei Teng & Gaëlle Treut & Meicong Liang, 2022. "The economic impact of a deep decarbonisation pathway for China: a hybrid model analysis through bottom-up and top-down linking," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-37, January.
    36. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    37. Durand-Lasserve, Olivier & Almutairi, Hossa & Aljarboua, Abdullah & Pierru, Axel & Pradhan, Shreekar & Murphy, Frederic, 2023. "Hard-linking a top-down economic model with a bottom-up energy system for an oil-exporting country with price controls," Energy, Elsevier, vol. 266(C).
    38. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    39. Pisciella, Paolo & van Beesten, E. Ruben & Tomasgard, Asgeir, 2023. "Efficient coordination of top-down and bottom-up models for energy system design: An algorithmic approach," Energy, Elsevier, vol. 284(C).
    40. Aunedi, Marko & Yliruka, Maria & Dehghan, Shahab & Pantaleo, Antonio Marco & Shah, Nilay & Strbac, Goran, 2022. "Multi-model assessment of heat decarbonisation options in the UK using electricity and hydrogen," Renewable Energy, Elsevier, vol. 194(C), pages 1261-1276.
    41. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).

  23. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.

    Cited by:

    1. Jinho Choi & Yong Sik Chang, 2020. "Development of a New Methodology to Identity Promising Technology Areas Using M&A Information," Sustainability, MDPI, vol. 12(14), pages 1-25, July.
    2. Limei Ma & Qianying Wang & Dan Shi & Qinglong Shao, 2023. "Spatiotemporal patterns and determinants of renewable energy innovation: Evidence from a province-level analysis in China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    3. Pitelis, Alkis & Vasilakos, Nicholas & Chalvatzis, Konstantinos, 2020. "Fostering innovation in renewable energy technologies: Choice of policy instruments and effectiveness," Renewable Energy, Elsevier, vol. 151(C), pages 1163-1172.
    4. Agnė Šneiderienė & Rasa Viederytė & Lilita Abele, 2020. "Green growth assessment discourse on evaluation indices in the European Union," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 8(2), pages 360-369, December.
    5. Gersbach, Hans & Riekhof, Marie-Catherine, 2021. "Permit markets, carbon prices and the creation of innovation clusters," Resource and Energy Economics, Elsevier, vol. 65(C).
    6. Su, Chi-Wei & Pang, Li-Dong & Tao, Ran & Shao, Xuefeng & Umar, Muhammad, 2022. "Renewable energy and technological innovation: Which one is the winner in promoting net-zero emissions?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    7. Nelson, Kelly & Brown, Zachary S. & Parton, Lee, 2019. "Biofuels Policy and Innovation Impacts: Evidence from Biofuels and Agricultural Patent Indicators," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291243, Agricultural and Applied Economics Association.
    8. Ying Qu & Ying Yu & Andrea Appolloni & Mengru Li & Yue Liu, 2017. "Measuring Green Growth Efficiency for Chinese Manufacturing Industries," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    9. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    11. Lin, Boqiang & Chen, Yufang, 2019. "Does electricity price matter for innovation in renewable energy technologies in China?," Energy Economics, Elsevier, vol. 78(C), pages 259-266.
    12. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    13. Teresa Pakulska, 2021. "Green Energy in Central and Eastern European (CEE) Countries: New Challenges on the Path to Sustainable Development," Energies, MDPI, vol. 14(4), pages 1-19, February.
    14. Zhao, Ge & Zhou, P. & Wen, Wen, 2022. "What cause regional inequality of technology innovation in renewable energy? Evidence from China," Applied Energy, Elsevier, vol. 310(C).
    15. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    16. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    17. Daniel Coronado & Esther Flores & M. Ángeles Martínez, 2017. "The role of regional economic specialization in the production of university-owned patents," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 59(2), pages 513-533, September.
    18. Ortega-Izquierdo, Margarita & Río, Pablo del, 2020. "An analysis of the socioeconomic and environmental benefits of wind energy deployment in Europe," Renewable Energy, Elsevier, vol. 160(C), pages 1067-1080.
    19. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    20. Zhao, Ge & Zhou, P. & Wen, Wen, 2021. "Feed-in tariffs, knowledge stocks and renewable energy technology innovation: The role of local government intervention," Energy Policy, Elsevier, vol. 156(C).
    21. Jinho Choi & Nina Shin & Yong Sik Chang, 2021. "Strategic Investment Decisions for Emerging Technology Fields in the Health Care Sector Based on M&A Analysis," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    22. George Halkos & Antonis Skouloudis, 2021. "Environmental technology development and diffusion: panel data evidence from 56 countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 79-92, January.
    23. Maria José Sousa, 2022. "Digital Technologies and Public Policies Applied to Green Cities," Land, MDPI, vol. 11(11), pages 1-18, November.
    24. Wei, Yi-Ming & Kang, Jia-Ning & Yu, Bi-Ying & Liao, Hua & Du, Yun-Fei, 2017. "A dynamic forward-citation full path model for technology monitoring: An empirical study from shale gas industry," Applied Energy, Elsevier, vol. 205(C), pages 769-780.
    25. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    26. Wang, Nan & Mogi, Gento, 2017. "Deregulation, market competition, and innovation of utilities: Evidence from Japanese electric sector," Energy Policy, Elsevier, vol. 111(C), pages 403-413.
    27. Li, Songran & Shao, Qinglong, 2021. "Exploring the determinants of renewable energy innovation considering the institutional factors: A negative binomial analysis," Technology in Society, Elsevier, vol. 67(C).
    28. Zhang, Gupeng & Duan, Hongbo & Wang, Shouyang & Zhang, Qianlong, 2018. "Comparative technological advantages between China and developed areas in respect of energy production: Quantitative and qualitative measurements based on patents," Energy, Elsevier, vol. 162(C), pages 1223-1233.
    29. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    30. Taiming Chen & Xi Chen, 2023. "The Role of Digital Transformation in the Relationship between Industrial Policies and Technological Innovation Performance: Evidence from the Listed Wind Power Enterprises in China," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    31. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    32. Xin-gang, Zhao & Wei, Wang & Jieying, Wang, 2022. "The policy effects of demand-pull and technology-push on the diffusion of wind power: A scenario analysis based on system dynamics approach," Energy, Elsevier, vol. 261(PA).
    33. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    34. Wang, Juxian & Ma, Mengdi & Dong, Tianyi & Zhang, Zheyuan, 2023. "Do ESG ratings promote corporate green innovation? A quasi-natural experiment based on SynTao Green Finance's ESG ratings," International Review of Financial Analysis, Elsevier, vol. 87(C).
    35. Guillaume Bourgeois & Sandrine Mathy & Philippe Menanteau, 2017. "The effect of climate policies on renewable energies : a review of econometric studies [L’effet des politiques climatiques sur les énergies renouvelables : une revue des études économétriques]," Post-Print hal-01585906, HAL.
    36. Xiaomin Zhao & Jiahui Li & Yang Li, 2022. "Impact of Environmental Tax on Corporate Sustainable Performance: Insights from High-Tech Firms in China," IJERPH, MDPI, vol. 20(1), pages 1-13, December.
    37. Feng, Sida & Magee, Christopher L., 2020. "Technological development of key domains in electric vehicles: Improvement rates, technology trajectories and key assignees," Applied Energy, Elsevier, vol. 260(C).
    38. Danish, & Ulucak, Recep, 2021. "Renewable energy, technological innovation and the environment: A novel dynamic auto-regressive distributive lag simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    39. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    40. Dameng Hu & Yuanzhe Huang & Changbiao Zhong, 2021. "Does Environmental Information Disclosure Affect the Sustainable Development of Enterprises: The Role of Green Innovation," Sustainability, MDPI, vol. 13(19), pages 1-22, October.
    41. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    42. Wang, Xiaozhen & Zou, Honghui, 2018. "Study on the effect of wind power industry policy types on the innovation performance of different ownership enterprises: Evidence from China," Energy Policy, Elsevier, vol. 122(C), pages 241-252.
    43. Yuanyuan Gong & Zhangsheng Liu & Shuangyin Wu & Shuhui Pu & Xiaolu Zhang & Lingkun Chen, 2023. "Study on the Technological Inductive Effects of Product Information Label: Evidence From the Energy-Efficiency Labeling System in China," SAGE Open, , vol. 13(3), pages 21582440231, August.
    44. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    45. Zhang, Zhenhua & Wang, Jing & Feng, Chao & Chen, Xi, 2023. "Do pilot zones for green finance reform and innovation promote energy savings? Evidence from China," Energy Economics, Elsevier, vol. 124(C).
    46. Acarer, Sercan, 2020. "Peak lift-to-drag ratio enhancement of the DU12W262 airfoil by passive flow control and its impact on horizontal and vertical axis wind turbines," Energy, Elsevier, vol. 201(C).
    47. Qi Ban, 2022. "The Quality of Corporate Social Responsibility Information Disclosure and Enterprise Innovation: Evidence from Chinese Listed Companies," Sustainability, MDPI, vol. 15(1), pages 1-22, December.
    48. Zhang, Hongyan & Gao, Shuaizhi & Zhou, Peng, 2023. "Role of digitalization in energy storage technological innovation: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    49. Elina Bryngemark & Patrik Söderholm, 2022. "Green industrial policies and domestic production of biofuels: an econometric analysis of OECD countries," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 24(2), pages 225-261, April.
    50. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).

  24. Hellsmark, Hans & Frishammar, Johan & Söderholm, Patrik & Ylinenpää, Håkan, 2016. "The role of pilot and demonstration plants in technology development and innovation policy," Research Policy, Elsevier, vol. 45(9), pages 1743-1761.

    Cited by:

    1. Eleni Giannopoulou & Pierre-Jean Barlatier & Julien Pénin, 2019. "Same but different ? Research and technology organizations, universities and the innovation activities of firms," Post-Print hal-02180704, HAL.
    2. Mohammad Ershadul Karim & Ridoan Karim & Md. Toriqul Islam & Firdaus Muhammad-Sukki & Nurul Aini Bani & Mohd Nabil Muhtazaruddin, 2019. "Renewable Energy for Sustainable Growth and Development: An Evaluation of Law and Policy of Bangladesh," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    3. Chen Zhao & Feng Feng, 2023. "Do parent organizations influence R&D decisions of academic spin‐offs?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(1), pages 43-57, January.
    4. Sofia Nordqvist & Johan Frishammar, 2019. "Knowledge types to progress the development of sustainable technologies: a case study of Swedish demonstration plants," International Entrepreneurship and Management Journal, Springer, vol. 15(1), pages 75-95, March.
    5. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).
    6. Farrell, Niall, 2023. "Policy design for green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    7. Bolwig, Simon & Bazbauers, Gatis & Klitkou, Antje & Lund, Peter D. & Blumberga, Andra & Gravelsins, Armands & Blumberga, Dagnija, 2019. "Review of modelling energy transitions pathways with application to energy system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 440-452.
    8. Arne Martin Fevolden & Lars Coenen & Teis Hansen & Antje Klitkou, 2017. "The Role of Trials and Demonstration Projects in the Development of a Sustainable Bioeconomy," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    9. Grimm, Veronika & Kretschmer, Sandra & Mehl, Simon, 2020. "Green innovations: The organizational setup of pilot projects and its influence on consumer perceptions," Energy Policy, Elsevier, vol. 142(C).
    10. Hojckova, Kristina & Ahlborg, Helene & Morrison, Gregory M. & Sandén, Björn, 2020. "Entrepreneurial use of context for technological system creation and expansion: The case of blockchain-based peer-to-peer electricity trading," Research Policy, Elsevier, vol. 49(8).
    11. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    12. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    13. Müller, Simon C. & Welpe, Isabell M., 2018. "Sharing electricity storage at the community level: An empirical analysis of potential business models and barriers," Energy Policy, Elsevier, vol. 118(C), pages 492-503.
    14. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Hedeler, Barbara & Lettner, Miriam & Stern, Tobias & Schwarzbauer, Peter & Hesser, Franziska, 2020. "Strategic decisions on knowledge development and diffusion at pilot and demonstration projects: An empirical mapping of actors, projects and strategies in the case of circular forest bioeconomy," Forest Policy and Economics, Elsevier, vol. 110(C).
    16. Samis, Michael & Steen, John, 2020. "Financial evaluation of mining innovation pilot projects and the value of information," Resources Policy, Elsevier, vol. 69(C).
    17. Simms, Christopher & Frishammar, Johan & Ford, Nicholas, 2021. "The front end in radical process innovation projects: Sources of knowledge problems and coping mechanisms," Technovation, Elsevier, vol. 105(C).
    18. Niklas Fernqvist & Mats Lundqvist, 2021. "Entrepreneurial Sustainability Engagement of Insiders Initiating Energy System Transition," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    19. Liu, Xiaoling & Sun, Xiaohua & Li, Mingshan & Zhai, Yu, 2020. "The effects of demonstration projects on electric vehicle diffusion: An empirical study in China," Energy Policy, Elsevier, vol. 139(C).
    20. Vivien, F.-D. & Nieddu, M. & Befort, N. & Debref, R. & Giampietro, M., 2019. "The Hijacking of the Bioeconomy," Ecological Economics, Elsevier, vol. 159(C), pages 189-197.
    21. Geels, F.W. & Sareen, S & Hook, A. & Sovacool, B.K., 2021. "Navigating implementation dilemmas in technology-forcing policies: A comparative analysis of accelerated smart meter diffusion in the Netherlands, UK, Norway, and Portugal (2000-2019)," Research Policy, Elsevier, vol. 50(7).
    22. Cai, Ying & Lin, Jun & Zhang, Ruxin, 2023. "When and how to implement design thinking in the innovation process: A longitudinal case study," Technovation, Elsevier, vol. 126(C).
    23. Fredrik Envall, 2023. "Situated dynamics of environmental governance in Swedish smart energy experimentation: Tentativeness, demonstration, upscaling," Environment and Planning C, , vol. 41(5), pages 922-940, August.
    24. Wang, Qiao & Yi, Hongtao, 2021. "New energy demonstration program and China's urban green economic growth: Do regional characteristics make a difference?," Energy Policy, Elsevier, vol. 151(C).
    25. Tsouri, Maria & Hanson, Jens & Normann, Håkon Endresen, 2021. "Does participation in knowledge networks facilitate market access in global innovation systems? The case of offshore wind," Research Policy, Elsevier, vol. 50(5).
    26. Befort, N., 2020. "Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    27. Turnheim, Bruno & Geels, Frank W., 2019. "Incumbent actors, guided search paths, and landmark projects in infra-system transitions: Re-thinking Strategic Niche Management with a case study of French tramway diffusion (1971–2016)," Research Policy, Elsevier, vol. 48(6), pages 1412-1428.
    28. Söderholm, Patrik & Hellsmark, Hans & Frishammar, Johan & Hansson, Julia & Mossberg, Johanna & Sandström, Annica, 2019. "Technological development for sustainability: The role of network management in the innovation policy mix," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 309-323.

  25. Ejdemo, Thomas & Söderholm, Patrik, 2015. "Wind power, regional development and benefit-sharing: The case of Northern Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 476-485.

    Cited by:

    1. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    2. Hernández-Cedeño, Isaac & Nelson, Pamela F. & Anglés-Hernández, Marisol, 2021. "Social and environmental conflict analysis on energy projects: Bayesian predictive network approach," Energy Policy, Elsevier, vol. 157(C).
    3. XU Jianzhong & Albina Assenova & Vasilii Erokhin, 2018. "Renewable Energy and Sustainable Development in a Resource-Abundant Country: Challenges of Wind Power Generation in Kazakhstan," Sustainability, MDPI, vol. 10(9), pages 1-21, September.
    4. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    5. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Meier, Jan-Niklas & Lehmann, Paul, 2022. "Optimal federal co-regulation of renewable energy deployment," Resource and Energy Economics, Elsevier, vol. 70(C).
    7. Lindvall, Daniel, 2023. "Why municipalities reject wind power: A study on municipal acceptance and rejection of wind power instalments in Sweden," Energy Policy, Elsevier, vol. 180(C).
    8. Davor Mikulić & Željko Lovrinčević & Damira Keček, 2018. "Economic Effects of Wind Power Plant Deployment on the Croatian Economy," Energies, MDPI, vol. 11(7), pages 1-20, July.
    9. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    10. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.
    11. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2017. "Local community as shareholders in clean energy projects: Innovative strategy for accelerating renewable energy deployment in India," Renewable Energy, Elsevier, vol. 101(C), pages 873-885.
    12. Montrone, Lorenzo & Steckel, Jan Christoph & Kalkuhl, Matthias, 2022. "The type of power capacity matters for economic development – Evidence from a global panel," Resource and Energy Economics, Elsevier, vol. 69(C).
    13. David Rudolph & Claire Haggett & Mhairi Aitken, 2018. "Community benefits from offshore renewables: The relationship between different understandings of impact, community, and benefit," Environment and Planning C, , vol. 36(1), pages 92-117, February.
    14. Woo, JongRoul & Chung, Sungsam & Lee, Chul-Yong & Huh, Sung-Yoon, 2019. "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 643-652.
    15. Keček, Damira & Mikulić, Davor & Lovrinčević, Željko, 2019. "Deployment of renewable energy: Economic effects on the Croatian economy," Energy Policy, Elsevier, vol. 126(C), pages 402-410.
    16. Leer Jørgensen, Marie & Anker, Helle Tegner & Lassen, Jesper, 2020. "Distributive fairness and local acceptance of wind turbines: The role of compensation schemes," Energy Policy, Elsevier, vol. 138(C).
    17. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    18. John C. Pierce & Rachel M. Krause & Sarah L. Hofmeyer & Bonnie J. Johnson, 2021. "Explanations for Wind Turbine Installations: Local and Global Environmental Concerns in the Central Corridor of the United States?," Energies, MDPI, vol. 14(18), pages 1-11, September.
    19. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    20. Antonio Pastorelli Rodrigues, Thiago & Ledi Gonçalves, Solange & Squarize Chagas, André, 2019. "Wind power and the labor market in the Brazilian Northeast: a spatial propensity score matching approach," Revista Brasileira de Estudos Regionais e Urbanos, Associação Brasileira de Estudos Regionais e Urbanos (ABER), vol. 13(3), pages 357-378, March.
    21. Nakano, Satoshi & Arai, Sonoe & Washizu, Ayu, 2018. "Development and application of an inter-regional input-output table for analysis of a next generation energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2834-2842.
    22. Liljenfeldt, Johanna & Pettersson, Örjan, 2017. "Distributional justice in Swedish wind power development – An odds ratio analysis of windmill localization and local residents’ socio-economic characteristics," Energy Policy, Elsevier, vol. 105(C), pages 648-657.
    23. Zountouridou, E.I. & Kiokes, G.C. & Chakalis, S. & Georgilakis, P.S. & Hatziargyriou, N.D., 2015. "Offshore floating wind parks in the deep waters of Mediterranean Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 433-448.
    24. María-Jesús Gutiérrez-Pedrero & María J. Ruiz-Fuensanta & Miguel-Ángel Tarancón, 2020. "Regional Factors Driving the Deployment of Wind Energy in Spain," Energies, MDPI, vol. 13(14), pages 1-13, July.
    25. Clausen, Laura Tolnov & Rudolph, David, 2020. "Renewable energy for sustainable rural development: Synergies and mismatches," Energy Policy, Elsevier, vol. 138(C).
    26. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.
    27. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    28. Luigi Aldieri & Jonas Grafström & Concetto Paolo Vinci, 2021. "The Effect of Marshallian and Jacobian Knowledge Spillovers on Jobs in the Solar, Wind and Energy Efficiency Sector," Energies, MDPI, vol. 14(14), pages 1-16, July.
    29. Allan, Grant & Comerford, David & Connolly, Kevin & McGregor, Peter & Ross, Andrew G., 2020. "The economic and environmental impacts of UK offshore wind development: The importance of local content," Energy, Elsevier, vol. 199(C).

  26. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2015. "Convergence of carbon dioxide performance across Swedish industrial sectors: An environmental index approach," Energy Economics, Elsevier, vol. 51(C), pages 227-235.
    See citations under working paper version above.
  27. Söderholm, Kristina & Söderholm, Patrik & Helenius, Heidi & Pettersson, Maria & Viklund, Roine & Masloboev, Vladimir & Mingaleva, Tatiana & Petrov, Viktor, 2015. "Environmental regulation and competitiveness in the mining industry: Permitting processes with special focus on Finland, Sweden and Russia," Resources Policy, Elsevier, vol. 43(C), pages 130-142.

    Cited by:

    1. Kusi-Sarpong, Simonov & Sarkis, Joseph & Wang, Xuping, 2016. "Assessing green supply chain practices in the Ghanaian mining industry: A framework and evaluation," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 325-341.
    2. Yıldız, Taşkın Deniz, 2020. "The impacts of EIA procedure on the mining sector in the permit process of mining operating activities & Turkey analysis," Resources Policy, Elsevier, vol. 67(C).
    3. Prince Amoah & Gabriel Eweje, 2021. "Impact mitigation or ecological restoration? Examining the environmental sustainability practices of multinational mining companies," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 551-565, January.
    4. Lim, Seul-Ye & Min, Seo-Hyeon & Yoo, Seung-Hoon, 2016. "The public value of contaminated soil remediation in Janghang copper smelter of Korea," Resources Policy, Elsevier, vol. 50(C), pages 66-74.
    5. Yıldız, Taşkın Deniz, 2022. "Considering the recent increase in license fees in Turkey, how can the negative effect of the fees on the mining operating costs be reduced?," Resources Policy, Elsevier, vol. 77(C).
    6. Lei Fu & Siyuan Zhang & Sidai Guo, 2024. "A Study on the Changes of Green Total Factor Productivity in Chinese Cities under Resource and Environmental Constraints," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    7. Wellington Alves & Paula Ferreira & Madalena Araújo, 2018. "Sustainability awareness in Brazilian mining corporations: the case of Paraíba state," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 41-63, December.
    8. Yulia Alexandrovna Nazarova & Natalya Yuryevna Sopilko & Andrey Valentinovich Kulakov & Irina Ivanovna Shatalova & Olga Yuryevna Myasnikova & Nataliya Vital evna Bondarchuk, 2019. "Feasibility Study of Renewable Energy Deployment Scenarios in Remote Arctic Communities," International Journal of Energy Economics and Policy, Econjournals, vol. 9(1), pages 330-335.
    9. Boulamanti, Aikaterini & Moya, Jose Antonio, 2016. "Production costs of the non-ferrous metals in the EU and other countries: Copper and zinc," Resources Policy, Elsevier, vol. 49(C), pages 112-118.
    10. Boulamanti, Aikaterini & Moya, Jose A., 2017. "Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1205-1212.
    11. Linda Wårell, 2021. "Mineral Deposits Safeguarding and Land Use Planning—The Importance of Creating Shared Value," Resources, MDPI, vol. 10(4), pages 1-18, April.
    12. Raitio, Kaisa & Allard, Christina & Lawrence, Rebecca, 2020. "Mineral extraction in Swedish Sápmi: The regulatory gap between Sami rights and Sweden’s mining permitting practices," Land Use Policy, Elsevier, vol. 99(C).
    13. Holley, Elizabeth A. & Mitcham, Carl, 2016. "The Pebble Mine Dialogue: A case study in public engagement and the social license to operate," Resources Policy, Elsevier, vol. 47(C), pages 18-27.
    14. Die Hu & Yuandi Wang & Yu Li, 2017. "How Does Open Innovation Modify the Relationship between Environmental Regulations and Productivity?," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1132-1143, December.
    15. Johnson, Eva Liedholm & Ericsson, Magnus & Löf, Anton, 2023. "The mining permitting process in selected developed economies," Land Use Policy, Elsevier, vol. 131(C).
    16. Song, Malin & Du, Juntao & Tan, Kim Hua, 2018. "Impact of fiscal decentralization on green total factor productivity," International Journal of Production Economics, Elsevier, vol. 205(C), pages 359-367.
    17. Andreas Endl, 2017. "Addressing “Wicked Problems” through Governance for Sustainable Development—A Comparative Analysis of National Mineral Policy Approaches in the European Union," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    18. Guichuan Zhou & Wendi Liu & Liming Zhang & Kaiwen She, 2019. "Can Environmental Regulation Flexibility Explain the Porter Hypothesis?—An Empirical Study Based on the Data of China’s Listed Enterprises," Sustainability, MDPI, vol. 11(8), pages 1-14, April.
    19. Yıldız, Taşkın Deniz, 2022. "How can the state rights be calculated by considering a high share of state right in mining operating costs in Turkey?," Resources Policy, Elsevier, vol. 75(C).
    20. Prince Amoah & Gabriel Eweje, 2023. "Organisational drivers and sustainability implementation in the mining industry: A holistic theoretical framework," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5602-5614, December.
    21. Aldieri, Luigi & Kotsemir, Maxim & Paolo Vinci, Concetto, 2021. "Environmental innovations and productivity: Empirical evidence from Russian regions," Resources Policy, Elsevier, vol. 74(C).
    22. Hui Zou & Xuejun Duan & Lei Wang & Tingting Jin, 2022. "The effects of environmental regulation on chemical industry location: Evidence from the region along the Yangtze River, China," Growth and Change, Wiley Blackwell, vol. 53(2), pages 800-822, June.
    23. Söderholm, Patrik, 2023. "How environmental permitting uncertainty in large-scale mining could influence subcontractors: The underlying chicken-and-egg problem," Resources Policy, Elsevier, vol. 82(C).

  28. Häggquist, Elisabeth & Söderholm, Patrik, 2015. "The economic value of geological information: Synthesis and directions for future research," Resources Policy, Elsevier, vol. 43(C), pages 91-100.

    Cited by:

    1. Lim, Seul-Ye & Min, Seo-Hyeon & Yoo, Seung-Hoon, 2016. "The public value of contaminated soil remediation in Janghang copper smelter of Korea," Resources Policy, Elsevier, vol. 50(C), pages 66-74.
    2. Compernolle, T. & Welkenhuysen, K. & Huisman, K. & Piessens, K. & Kort, P., 2017. "Off-shore enhanced oil recovery in the North Sea: The impact of price uncertainty on the investment decisions," Energy Policy, Elsevier, vol. 101(C), pages 123-137.
    3. Gildemeister, Martin & Jara, J. Joaquín & Lagos, Gustavo & Marquardt, Carlos & Espinoza, Felipe, 2018. "Direct economic return to government of public geoscience information investments in Chile," Resources Policy, Elsevier, vol. 55(C), pages 152-162.
    4. Fogarty, James J. & Sagerer, Simon, 2016. "Exploration externalities and government subsidies: The return to government," Resources Policy, Elsevier, vol. 47(C), pages 78-86.

  29. Söderholm, Patrik & Svahn, Nanna, 2015. "Mining, regional development and benefit-sharing in developed countries," Resources Policy, Elsevier, vol. 45(C), pages 78-91.

    Cited by:

    1. Maria S. Tysiachniouk, 2020. "Disentangling Benefit-Sharing Complexities of Oil Extraction on the North Slope of Alaska," Sustainability, MDPI, vol. 12(13), pages 1-31, July.
    2. Parker, Rachel & Cox, Stephen, 2018. "How the globalisation and financialisation of mining Majors affects linkage development with local engineering and technology suppliers in the Queensland resources industry," Resources Policy, Elsevier, vol. 58(C), pages 125-130.
    3. Lopes, Alef & Ruiz, Ricardo & Ribeiro, Rafael & Cantelmo, Weslley, 2023. "Linkages in the metal mining industry: Local job multipliers in Brazil," Resources Policy, Elsevier, vol. 82(C).
    4. Kulczycka, Joanna & Wirth, Herbert & Hausner, Jerzy, 2017. "Polish tax policy - its impact on the mineral sector," Resources Policy, Elsevier, vol. 52(C), pages 72-80.
    5. Neudorfer, Natascha S., 2018. "Commodities and corruption – How the middle class and democratic institutions lead to less corruption in resource-rich countries," Resources Policy, Elsevier, vol. 58(C), pages 175-191.
    6. Ali,Daniel Ayalew & Deininger,Klaus W. & Harris,Charles Anthony Philip & Ali,Daniel Ayalew & Deininger,Klaus W. & Harris,Charles Anthony Philip, 2016. "Large farm establishment, smallholder productivity, labor market participation, and resilience : evidence from Ethiopia," Policy Research Working Paper Series 7576, The World Bank.
    7. Fordham, Anne Elizabeth & Robinson, Guy M. & Blackwell, Boyd Dirk, 2017. "Corporate social responsibility in resource companies – Opportunities for developing positive benefits and lasting legacies," Resources Policy, Elsevier, vol. 52(C), pages 366-376.
    8. Marcellinus Essah, 2022. "Gold mining in Ghana and the UN Sustainable Development Goals: Exploring community perspectives on social and environmental injustices," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 127-138, February.
    9. Padmanabha Hota & Bhagirath Behera, 2016. "Opencast coal mining and sustainable local livelihoods in Odisha, India," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 29(1), pages 1-13, April.
    10. Castaño, Andrés & Lufin, Marcelo & Atienza, Miguel, 2019. "A structural path analysis of Chilean mining linkages between 1995 and 2011. What are the channels through which extractive activity affects the economy?," Resources Policy, Elsevier, vol. 60(C), pages 106-117.
    11. Gunton, Cameron & Gunton, Thomas & Batson, Joshua & Markey, Sean & Dale, Daniel, 2021. "Designing fiscal regimes for impact benefit agreements," Resources Policy, Elsevier, vol. 72(C).
    12. Cascadden, Maggie & Gunton, Thomas & Rutherford, Murray, 2021. "Best practices for Impact Benefit Agreements," Resources Policy, Elsevier, vol. 70(C).
    13. Gunton, Cameron & Markey, Sean, 2021. "The role of community benefit agreements in natural resource governance and community development: Issues and prospects," Resources Policy, Elsevier, vol. 73(C).
    14. Gunton, Thomas & Werker, Eric & Markey, Sean, 2021. "Community benefit agreements and natural resource development: Achieving better outcomes," Resources Policy, Elsevier, vol. 73(C).
    15. Ediriweera, Amali & Wiewiora, Anna, 2021. "Barriers and enablers of technology adoption in the mining industry," Resources Policy, Elsevier, vol. 73(C).
    16. Gwen Arnold & Meghan Klasic & Madline Schomburg & Abigail York & Melissa Baum & Maia Cherin & Sydney Cliff & Parisa Kavousi & Alexandria Tillett Miller & Diana Shajari & Yuer Wang & Luigi Zialcita, 2022. "Boom, bust, action! How communities can cope with boom‐bust cycles in unconventional oil and gas development," Review of Policy Research, Policy Studies Organization, vol. 39(5), pages 541-569, September.
    17. Andrey N. Petrov & Maria S. Tysiachniouk, 2019. "Benefit Sharing in the Arctic: A Systematic View," Resources, MDPI, vol. 8(3), pages 1-16, September.
    18. Vining, Aidan R. & Richards, John, 2016. "Indigenous economic development in Canada: Confronting principal-agent and principal–principal problems to reduce resource rent dissipation," Resources Policy, Elsevier, vol. 49(C), pages 358-367.
    19. Thomas Moritz & Thomas Ejdemo & Patrik Söderholm & Linda Wårell, 2017. "The local employment impacts of mining: an econometric analysis of job multipliers in northern Sweden," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(1), pages 53-65, April.
    20. Gruenhagen, Jan Henrik & Parker, Rachel, 2020. "Factors driving or impeding the diffusion and adoption of innovation in mining: A systematic review of the literature," Resources Policy, Elsevier, vol. 65(C).
    21. Anne Elizabeth Fordham & Guy M. Robinson, 2018. "Mapping meanings of corporate social responsibility – an Australian case study," International Journal of Corporate Social Responsibility, Springer, vol. 3(1), pages 1-20, December.
    22. Minati Sahoo & Dharmabrata Mohapatra & Dukhabandhu Sahoo, 2018. "Livelihood Dynamism in Mining Region of Odisha, India," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 8(1), pages 07-15, January.
    23. Mamoudou Camara, 2023. "Bauxite mining and economic growth in Guinea over the period 1986–2020: empirical evidence from ARDL and NARDL approaches," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(1), pages 157-179, January.
    24. Söderholm, Patrik, 2023. "How environmental permitting uncertainty in large-scale mining could influence subcontractors: The underlying chicken-and-egg problem," Resources Policy, Elsevier, vol. 82(C).
    25. Measham, Thomas & Fleming, David & Schandl, Heinz, 2015. "A Conceptual Model of the Socioeconomic Impacts of Unconventional Fossil Fuel Extraction," MPRA Paper 68523, University Library of Munich, Germany, revised 24 Nov 2015.

  30. Ahlborg, Helene & Boräng, Frida & Jagers, Sverker C. & Söderholm, Patrik, 2015. "Provision of electricity to African households: The importance of democracy and institutional quality," Energy Policy, Elsevier, vol. 87(C), pages 125-135.

    Cited by:

    1. Chiara Certomà & Filippo Corsini & Marina Di Giacomo & Marco Guerrazzi, 2023. "Beyond Income and Inequality: The Role of Socio-political Factors for Alleviating Energy Poverty in Europe," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 169(1), pages 167-208, September.
    2. Zaman, Rafia & Brudermann, Thomas, 2018. "Energy governance in the context of energy service security: A qualitative assessment of the electricity system in Bangladesh," Applied Energy, Elsevier, vol. 223(C), pages 443-456.
    3. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    4. David Ockwell & Robert Byrne & Joanes Atela & Victoria Chengo & Elsie Onsongo & Jacob Fodio Todd & Victoria Kasprowicz & Adrian Ely, 2021. "Transforming Access to Clean Energy Technologies in the Global South: Learning from Lighting Africa in Kenya," Energies, MDPI, vol. 14(14), pages 1-24, July.
    5. Thierry Mamadou Asngar, 2022. "Does financial development improve access to electricity in sub-Saharan Africa?," SN Business & Economics, Springer, vol. 2(9), pages 1-18, September.
    6. Mahmud I Imam & Tooraj Jamasb & Manuel Llorca, 2019. "Political Economy of Reform and Regulation in the Electricity Sector of Sub-Saharan Africa," Working Papers EPRG1917, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Tomas Gabriel Bas & Jacques Gagnon & Philippe Gagnon & Angela Contreras, 2022. "Analysis of Agro Alternatives to Boost Cameroon’s Socio-Environmental Resilience, Sustainable Development, and Conservation of Native Forests," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    8. Li-Chen Chou & Wan-Hao Zhang & Meng-Ying Wang & Fu-Ming Yang, 2020. "The influence of democracy on emissions and energy efficiency in America: New evidence from quantile regression analysis," Energy & Environment, , vol. 31(8), pages 1318-1334, December.
    9. Chirambo, Dumisani, 2018. "Towards the achievement of SDG 7 in sub-Saharan Africa: Creating synergies between Power Africa, Sustainable Energy for All and climate finance in-order to achieve universal energy access before 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 600-608.
    10. Tchablemane YENLIDE & Mawussé Komlagan Nézan OKEY, 2022. "Corruption et accès à l’électricité dans les pays de l’Afrique subsaharienne," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 55, pages 23-37.
    11. Opoku, Eric Evans Osei & Kufuor, Nana Kwabena & Manu, Sylvester Adasi, 2021. "Gender, electricity access, renewable energy consumption and energy efficiency," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Tadadjeu, Sosson & Njangang, Henri & Ningaye, Paul & Nourou, Mohammadou, 2020. "Linking natural resource dependence and access to water and sanitation in African countries," Resources Policy, Elsevier, vol. 69(C).
    13. Mahmud I. Imam & Tooraj Jamasb & Manuel Llorca, 2018. "Sector Reforms and Institutional Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Working Papers EPRG 1801, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    14. Tobechi F. Agbanike & Anayochukwu Basil Chukwu & Mary J. Eteng & Hycenth O.R. Ogwuru & Lasbrey I. Anochiwa & Anuli R. Ogbuagu & Nnamdi C. Nwaeze & Sunday A. Okwor & Clara K. Anyanwu, 2022. "Political Environment and the Use of Energy Resources in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 342-349, July.
    15. Rohan Best & Paul J. Burke, 2017. "The Importance of Government Effectiveness for Transitions toward Greater Electrification in Developing Countries," Energies, MDPI, vol. 10(9), pages 1-17, August.
    16. Ongo Nkoa, Bruno Emmanuel & Tadadjeu, Sosson & Njangang, Henri, 2023. "Rich in the dark: Natural resources and energy poverty in Sub-Saharan Africa," Resources Policy, Elsevier, vol. 80(C).
    17. Noumba, Issidor & Nguea, Stéphane Mbiankeu, 2023. "Assessing the role of globalization for universal electricity access," International Economics, Elsevier, vol. 174(C), pages 180-195.
    18. Falchetta, Giacomo & Mistry, Malcolm N., 2021. "The role of residential air circulation and cooling demand for electrification planning: Implications of climate change in sub-Saharan Africa," Energy Economics, Elsevier, vol. 99(C).
    19. Aluko, Olufemi Adewale & Opoku, Eric Evans Osei & Ibrahim, Muazu & Kufuor, Nana Kwabena, 2023. "Put on the light! Foreign direct investment, governance and access to electricity," Energy Economics, Elsevier, vol. 119(C).
    20. Briggs, Ryan C., 2021. "Power to which people? Explaining how electrification targets voters across party rotations in Ghana," World Development, Elsevier, vol. 141(C).
    21. Mfouapon Alassa & Kamdem Cyrille Bergaly & Mohammadou Nourou, 2022. "Agricultural Foreign Aid Allocation in Sub-Saharan Africa: The importance of Democracy and Quality of Governance," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(3), pages 84-100, March.
    22. Olalekan Charles Okunlola, 2019. "Political Regime Types and Economic Development in Nigeria: Significance of Conflict and Corruption," Journal of Interdisciplinary Economics, , vol. 31(2), pages 183-216, July.
    23. Blimpo, Moussa P. & Postepska, Agnieszka & Xu, Yanbin, 2020. "Why is household electricity uptake low in Sub-Saharan Africa?," World Development, Elsevier, vol. 133(C).
    24. Chaudhry, Sajid M. & Shafiullah, Muhammad, 2021. "Does culture affect energy poverty? Evidence from a cross-country analysis," Energy Economics, Elsevier, vol. 102(C).
    25. Djeunankan, Ronald & Njangang, Henri & Tadadjeu, Sosson & Kamguia, Brice, 2023. "Remittances and energy poverty: Fresh evidence from developing countries," Utilities Policy, Elsevier, vol. 81(C).
    26. Lokonon Boris Odilon Kounagbè & Adeleke Oluwole Salami, 2017. "Working Paper 269 - Climate Change and Renewable Energy Generation in Africa," Working Paper Series 2386, African Development Bank.
    27. Taale, Francis & Kyeremeh, Christian, 2015. "Households' willingness to pay for reliable electricity services in Ghana," MPRA Paper 65780, University Library of Munich, Germany.
    28. Trotter, Philipp A. & Maconachie, Roy & McManus, Marcelle C., 2018. "Solar energy's potential to mitigate political risks: The case of an optimised Africa-wide network," Energy Policy, Elsevier, vol. 117(C), pages 108-126.
    29. Cummins, Mark & Gillanders, Robert, 2020. "Greasing the Turbines? Corruption and access to electricity in Africa," Energy Policy, Elsevier, vol. 137(C).
    30. Heggie, Alastair & Eager, Dan & McKinnon, Ken & Van Der Weijde, Adriaan H., 2018. "Power rationing in a long-term power shortage," Energy Policy, Elsevier, vol. 121(C), pages 202-210.
    31. Harris, Tom & Collinson, Mark & Wittenberg, Martin, 2017. "Aiming for a Moving Target: The Dynamics of Household Electricity Connections in a Developing Context," World Development, Elsevier, vol. 97(C), pages 14-26.
    32. Acheampong, Alex O. & Nghiem, Xuan-Hoa & Dzator, Janet & Rajaguru, Gulasekaran, 2023. "Promoting energy inclusiveness: Is rural energy poverty a political failure?," Utilities Policy, Elsevier, vol. 84(C).
    33. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes & Nguyen, Duc Khuong, 2023. "Understanding energy poverty drivers in Europe," Energy Policy, Elsevier, vol. 183(C).
    34. Boräng, Frida & Jagers, Sverker C. & Povitkina, Marina, 2016. "Political determinants of electricity provision in small island developing states," Energy Policy, Elsevier, vol. 98(C), pages 725-734.
    35. Joko Tri Haryanto, 2016. "Study of the Potential Sharing of the Electricity Subsidy by Regional Government," Journal of Social and Development Sciences, AMH International, vol. 7(3), pages 30-41.
    36. Kazeem Bello Ajide & Risikat Oladoyin Dauda & Olorunfemi Yasiru Alimi, 2023. "Electricity access, institutional infrastructure and health outcomes in Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 198-227, January.
    37. Mbiankeu Nguea, Stéphane & Kaguendo, Ulrich Vianney Elisée & Noumba, Issidor, 2022. "Are growth effects of foreign capital significant for increasing access to electricity in Africa?," Energy Policy, Elsevier, vol. 168(C).
    38. Acheampong, Alex O. & Shahbaz, Muhammad & Dzator, Janet & Jiao, Zhilun, 2022. "Effects of income inequality and governance on energy poverty alleviation: Implications for sustainable development policy," Utilities Policy, Elsevier, vol. 78(C).
    39. Said, Rabie & Acheampong, Alex O., 2023. "Financial inclusion and energy poverty reduction in sub-Saharan Africa," Utilities Policy, Elsevier, vol. 82(C).
    40. Trotter, Philipp A. & McManus, Marcelle C. & Maconachie, Roy, 2017. "Electricity planning and implementation in sub-Saharan Africa: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1189-1209.
    41. Uzziah Mutumbi & Gladman Thondhlana & Sheunesu Ruwanza, 2021. "Reported Behavioural Patterns of Electricity Use among Low-Income Households in Makhanda, South Africa," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    42. Banerjee, Rajabrata & Mishra, Vinod & Maruta, Admasu Asfaw, 2021. "Energy poverty, health and education outcomes: Evidence from the developing world," Energy Economics, Elsevier, vol. 101(C).
    43. Acheampong, Alex O. & Dzator, Janet & Shahbaz, Muhammad, 2021. "Empowering the powerless: Does access to energy improve income inequality?," Energy Economics, Elsevier, vol. 99(C).
    44. Sosson Tadadjeu & Paul Ningaye & Henri Njangang, 2023. "Are natural resources also bad for infrastructure quality?," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(6), pages 1053-1079, August.
    45. Stritzke, Susann & Trotter, Philipp A. & Twesigye, Peter, 2021. "Towards responsive energy governance: Lessons from a holistic analysis of energy access in Uganda and Zambia," Energy Policy, Elsevier, vol. 148(PA).

  31. Pettersson, Fredrik & Maddison, David & Acar, Sevil & Söderholm, Patrik, 2014. "Convergence of Carbon Dioxide Emissions: A Review of the Literature," International Review of Environmental and Resource Economics, now publishers, vol. 7(2), pages 141-178, July.

    Cited by:

    1. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    2. Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
    3. Wu, Jianxin & Wu, Yanrui & Guo, Xiumei & Cheong, Tsun Se, 2016. "Convergence of carbon dioxide emissions in Chinese cities: A continuous dynamic distribution approach," Energy Policy, Elsevier, vol. 91(C), pages 207-219.
    4. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2018. "Policy convergence as a multifaceted concept: the case of renewable energy policies in the European Union," Journal of Public Policy, Cambridge University Press, vol. 38(3), pages 361-387, September.
    5. Sanchez, Luis F. & Stern, David I., 2016. "Drivers of industrial and non-industrial greenhouse gas emissions," Ecological Economics, Elsevier, vol. 124(C), pages 17-24.
    6. Karimu, Amin & Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2016. "Energy Intensity and Convergence in Swedish Industry: A Combined Econometric and Decomposition Analysis," CERE Working Papers 2016:8, CERE - the Center for Environmental and Resource Economics.
    7. Lisa Gianmoena & Vicente Rios, 2018. "The Determinants of CO2 Emissions Differentials with Cross-Country Interaction Effects: A Dynamic Spatial Panel Data Bayesian Model Averaging Approach," Discussion Papers 2018/234, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    8. Jian-Xin Wu & Ling-Yun He, 2017. "The Distribution Dynamics of Carbon Dioxide Emissions Intensity across Chinese Provinces: A Weighted Approach," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    9. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    10. Wu, Jian-Xin & He, Ling-Yun & Zhang, ZhongXiang, 2019. "Does China Fall into Poverty-Environment Traps? Evidence from Long-term Income Dynamics and Urban Air Pollution," ETA: Economic Theory and Applications 285027, Fondazione Eni Enrico Mattei (FEEM).
    11. Stern, David I., 2015. "The environmental Kuznets curve after 25 years," Working Papers 249519, Australian National University, Centre for Climate Economics & Policy.
    12. Stern, David I. & van Dijk, Jeremy, 2016. "Economic growth and global particulate pollution concentrations," Working Papers 249523, Australian National University, Centre for Climate Economics & Policy.
    13. Brännlund, Runar & Karimu, Amin & Söderholm, Patrik, 2014. "Convergence in carbon dioxide emissions and the role of growth and institutions A parametric and nonparametric analysis," CERE Working Papers 2014:12, CERE - the Center for Environmental and Resource Economics.
    14. Wu, Jianxin & Wu, Yanrui & Se Cheong, Tsun & Yu, Yanni, 2018. "Distribution dynamics of energy intensity in Chinese cities," Applied Energy, Elsevier, vol. 211(C), pages 875-889.
    15. Bollino, Carlo Andrea & Galeotti, Marzio, 2021. "On the Water-Energy-Food Nexus: Is there Multivariate Convergence?," FEEM Working Papers 309919, Fondazione Eni Enrico Mattei (FEEM).
    16. Acar, Sevil & Yeldan, A. Erinç, 2018. "Investigating patterns of carbon convergence in an uneven economy: The case of Turkey," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 96-106.
    17. Rios, Vicente & Gianmoena, Lisa, 2018. "Convergence in CO2 emissions: A spatial economic analysis with cross-country interactions," Energy Economics, Elsevier, vol. 75(C), pages 222-238.
    18. Nicholas Apergis & James E. Payne, 2020. "NAFTA and the convergence of CO2 emissions intensity and its determinants," International Economics, CEPII research center, issue 161, pages 1-9.
    19. LAWSON, Laté A. & MARTINO, Roberto & NGUYEN-VAN, Phu, 2020. "Environmental convergence and environmental Kuznets curve: A unified empirical framework," Ecological Modelling, Elsevier, vol. 437(C).
    20. Guilló, María Dolores & Magalhaes, Manuela, 2018. "Long-run Sustainability in the Green Solow Model," QM&ET Working Papers 18-2, University of Alicante, D. Quantitative Methods and Economic Theory.
    21. Roberto Martino & Phu Nguyen-Van, 2016. "Environmental Kuznets curve and environmental convergence: A unified empirical framework for CO2 emissions," Working Papers of BETA 2016-18, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    22. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    23. Jiang, Lei & Folmer, Henk & Ji, Minhe & Zhou, P., 2018. "Revisiting cross-province energy intensity convergence in China: A spatial panel analysis," Energy Policy, Elsevier, vol. 121(C), pages 252-263.
    24. Laura Rodríguez-Fernández & Ana Belén Fernández Carvajal & María Bujidos-Casado, 2020. "Allocation of Greenhouse Gas Emissions Using the Fairness Principle: A Multi-Country Analysis," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    25. Diego Romero-Ávila & Tolga Omay, 2023. "Convergence of GHGs emissions in the long-run: aerosol precursors, reactive gases and aerosols—a nonlinear panel approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12303-12337, November.
    26. Fan Yang & Yongrok Choi & Hyoungsuk Lee, 2021. "Convergence or Divergence? Emission Performance in the Regional Comprehensive Economic Partnership Countries," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    27. Menegaki, Angeliki N. & Ahmad, Nisar & Aghdam, Reza FathollahZadeh & Naz, Amber, 2021. "The convergence in various dimensions of energy-economy-environment linkages: A comprehensive citation-based systematic literature review," Energy Economics, Elsevier, vol. 104(C).
    28. Peter S. Sephton, 2020. "Mean Reversion in CO2 Emissions: the Need for Structural Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 953-975, April.
    29. Feng Xiong & Leizhen Zang & David Feng & Jinhua Chen, 2023. "The influencing mechanism of financial development on CO2 emissions in China: double moderating effect of technological innovation and fossil energy dependence," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4911-4933, June.
    30. Davoud Behboudi & Davoud Hamidi Razi & Sadeq Rezaei, 2017. "Spatial Convergence Of Per Capita Co2 Emissions Among Mena Countries," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 11(1), pages 18-35, June.
    31. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    32. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    33. Jianxin Wu & Chunbo Ma, 2019. "The Convergence of China’s Marginal Abatement Cost of CO2: An Emission-Weighted Continuous State Space Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 72(4), pages 1099-1119, April.
    34. Belloc, Ignacio & Molina, José Alberto, 2023. "Are greenhouse gas emissions converging in Latin America? Implications for environmental policies," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 337-356.
    35. Kaitila, Ville, 2023. "Labour Productivity and Development of Carbon Competitiveness: Industry-Level Evidence from Europe," ETLA Reports 139, The Research Institute of the Finnish Economy.
    36. Brännlund, Runar & Lundgren, Tommy & Söderholm, Patrik, 2014. "Convergence of carbon dioxide performance across Swedish industrial sectors An environmental index approach," CERE Working Papers 2014:10, CERE - the Center for Environmental and Resource Economics.
    37. Liu, Chang & Hong, Tao & Li, Huaifeng & Wang, Lili, 2018. "From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China," Energy Policy, Elsevier, vol. 121(C), pages 300-313.
    38. Chaohui Zhang & Xin Dong & Ze Zhang, 2023. "Spatiotemporal Dynamic Distribution, Regional Differences and Spatial Convergence Mechanisms of Carbon Emission Intensity: Evidence from the Urban Agglomerations in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-28, February.
    39. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    40. Karakaya, Etem & Alataş, Sedat & Yılmaz, Burcu, 2019. "Replication of Strazicich and List (2003): Are CO2 emission levels converging among industrial countries?," Energy Economics, Elsevier, vol. 82(C), pages 135-138.
    41. Stern, David I. & Zha, Donglan, 2016. "Economic growth and particulate pollution concentrations in China," Working Papers 249522, Australian National University, Centre for Climate Economics & Policy.
    42. Payne, James E. & Lee, Junsoo & Islam, Md. Towhidul & Nazlioglu, Saban, 2022. "Stochastic convergence of per capita greenhouse gas emissions: New unit root tests with breaks and a factor structure," Energy Economics, Elsevier, vol. 113(C).
    43. Hongze Li & FengYun Li & Xinhua Yu, 2018. "China’s Contributions to Global Green Energy and Low-Carbon Development: Empirical Evidence under the Belt and Road Framework," Energies, MDPI, vol. 11(6), pages 1-32, June.
    44. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    45. Octavio Fernández-Amador & Doris A. Oberdabernig & Patrick Tomberger, 2019. "Testing for Convergence in Carbon Dioxide Emissions Using a Bayesian Robust Structural Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1265-1286, August.
    46. Yongqing Nan & Qin Li & Jinxiang Yu & Haiya Cai & Qin Zhou, 2020. "Has the emissions intensity of industrial sulphur dioxide converged? New evidence from China’s prefectural cities with dynamic spatial panel models," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5337-5369, August.
    47. Marco R. Barassi & Nicola Spagnolo & Yuqian Zhao, 2018. "Fractional Integration Versus Structural Change: Testing the Convergence of $$\hbox {CO}_{2}$$ CO 2 Emissions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 923-968, December.
    48. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).
    49. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    50. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2018. "Conditional convergence in per capita carbon emissions since 1900," Applied Energy, Elsevier, vol. 228(C), pages 916-927.

  32. Maria Pettersson & Patrik Söderholm, 2014. "Industrial Pollution Control and Efficient Licensing Processes: The Case of Swedish Regulatory Design," Sustainability, MDPI, vol. 6(8), pages 1-22, August.

    Cited by:

    1. Li, Jianglong & Lin, Boqiang, 2017. "Ecological total-factor energy efficiency of China's heavy and light industries: Which performs better?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 83-94.
    2. Söderholm, Kristina & Söderholm, Patrik & Helenius, Heidi & Pettersson, Maria & Viklund, Roine & Masloboev, Vladimir & Mingaleva, Tatiana & Petrov, Viktor, 2015. "Environmental regulation and competitiveness in the mining industry: Permitting processes with special focus on Finland, Sweden and Russia," Resources Policy, Elsevier, vol. 43(C), pages 130-142.
    3. Richard Almgren & Olof Hjelm, 2021. "Implementation of General Sustainability Objectives as Tools to Improve the Environmental Performance of Industry," Sustainability, MDPI, vol. 13(15), pages 1-16, July.
    4. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.

  33. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.

    Cited by:

    1. Yu, Song-min & Fan, Ying & Zhu, Lei & Eichhammer, Wolfgang, 2020. "Modeling the emission trading scheme from an agent-based perspective: System dynamics emerging from firms’ coordination among abatement options," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1113-1128.
    2. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    3. Oyedele, Lukumon O. & Ajayi, Saheed O. & Kadiri, Kabir O., 2014. "Use of recycled products in UK construction industry: An empirical investigation into critical impediments and strategies for improvement," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 23-31.
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.
    6. Prakash Kumar Sarangi & Rajesh Kumar Srivastava & Akhilesh Kumar Singh & Uttam Kumar Sahoo & Piotr Prus & Roman Sass, 2023. "Municipal-Based Biowaste Conversion for Developing and Promoting Renewable Energy in Smart Cities," Sustainability, MDPI, vol. 15(17), pages 1-28, August.
    7. Mariana Hassegawa & Jo Van Brusselen & Mathias Cramm & Pieter Johannes Verkerk, 2022. "Wood-Based Products in the Circular Bioeconomy: Status and Opportunities towards Environmental Sustainability," Land, MDPI, vol. 11(12), pages 1-16, November.
    8. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    9. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.

  34. Bergquist, Ann-Kristin & Söderholm, Kristina & Kinneryd, Hanna & Lindmark, Magnus & Söderholm, Patrik, 2013. "Command-and-control revisited: Environmental compliance and technological change in Swedish industry 1970–1990," Ecological Economics, Elsevier, vol. 85(C), pages 6-19.

    Cited by:

    1. Maria Pettersson & Patrik Söderholm, 2014. "Industrial Pollution Control and Efficient Licensing Processes: The Case of Swedish Regulatory Design," Sustainability, MDPI, vol. 6(8), pages 1-22, August.
    2. Kristina Söderholm & Ann-Kristin Bergquist, 2013. "Growing Green and Competitive—A Case Study of a Swedish Pulp Mill," Sustainability, MDPI, vol. 5(5), pages 1-17, April.
    3. Dechezleprêtre, Antoine & Neumayer, Eric & Perkins, Richard, 2015. "Environmental regulation and the cross-border diffusion of new technology: Evidence from automobile patents," Research Policy, Elsevier, vol. 44(1), pages 244-257.
    4. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    5. Mignon, Ingrid & Bergek, Anna, 2016. "Investments in renewable electricity production: The importance of policy revisited," Renewable Energy, Elsevier, vol. 88(C), pages 307-316.
    6. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    7. Tang, Maogang & Li, Xiuzhen & Zhang, Yun & Wu, Yingtao & Wu, Baijun, 2020. "From command-and-control to market-based environmental policies: Optimal transition timing and China’s heterogeneous environmental effectiveness," Economic Modelling, Elsevier, vol. 90(C), pages 1-10.
    8. Yu, Min & Cruz, Jose M. & Li, Dong & Masoumi, Amir H., 2022. "A multiperiod competitive supply chain framework with environmental policies and investments in sustainable operations," European Journal of Operational Research, Elsevier, vol. 300(1), pages 112-123.
    9. Weijia Zhuo, 2023. "Environmental regulation and corporate sustainability: Evidence from green innovation," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(4), pages 1723-1737, July.
    10. Söderholm, Kristina & Söderholm, Patrik & Helenius, Heidi & Pettersson, Maria & Viklund, Roine & Masloboev, Vladimir & Mingaleva, Tatiana & Petrov, Viktor, 2015. "Environmental regulation and competitiveness in the mining industry: Permitting processes with special focus on Finland, Sweden and Russia," Resources Policy, Elsevier, vol. 43(C), pages 130-142.
    11. Onufrey, Ksenia & Bergek, Anna, 2021. "Transformation in a mature industry: The role of business and innovation strategies," Technovation, Elsevier, vol. 105(C).
    12. Ren, Qiuzhen & Albrecht, Johan, 2023. "Toward circular economy: The impact of policy instruments on circular economy innovation for European small medium enterprises," Ecological Economics, Elsevier, vol. 207(C).
    13. Davide Golinelli, 2022. "Revisiting the Porter Hypothesis: A Nonparametric Analysis on the impact of Pollution Abatement Technologies on firms' performances," SEEDS Working Papers 0622, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2022.
    14. Zheng, Shiming & Yao, Rongrong & Zou, Ke, 2022. "Provincial environmental inequality in China: Measurement, influence, and policy instrument choice," Ecological Economics, Elsevier, vol. 200(C).
    15. Cenjie Liu & Chunbo Ma & Rui Xie, 2020. "Structural, Innovation and Efficiency Effects of Environmental Regulation: Evidence from China’s Carbon Emissions Trading Pilot," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 741-768, April.
    16. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    17. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.

  35. ÅSA Lindman & Kristina Ek & Patrik S�derholm, 2013. "Voluntary citizen participation in carbon allowance markets: the role of norm-based motivation," Climate Policy, Taylor & Francis Journals, vol. 13(6), pages 680-697, November.

    Cited by:

    1. Steffen Dalsgaard, 2022. "Can IT Resolve the Climate Crisis? Sketching the Role of an Anthropology of Digital Technology," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    2. Carattini, Stefano & Levin, Simon & Tavoni, Alessandro, 2019. "Cooperation in the climate commons," LSE Research Online Documents on Economics 100784, London School of Economics and Political Science, LSE Library.
    3. Hanimann, Raphael & Vinterbäck, Johan & Mark-Herbert, Cecilia, 2015. "Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?," Energy Policy, Elsevier, vol. 78(C), pages 11-21.
    4. Mundaca, Luis & Román-Collado, Rocío & Cansino, José M., 2022. "Assessing the impacts of social norms on low-carbon mobility options," Energy Policy, Elsevier, vol. 162(C).
    5. Baranzini, Andrea & Carattini, Stefano, 2017. "Effectiveness, earmarking and labeling: testing theacceptability of carbon taxes with survey data," LSE Research Online Documents on Economics 65212, London School of Economics and Political Science, LSE Library.
    6. Diederich, Johannes & Goeschl, Timo, 2017. "To mitigate or not to mitigate: The price elasticity of pro-environmental behavior," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 209-222.
    7. Enns, Alfred, 2022. "Die Bedeutung klimaschutzfördernder Entwicklungsprojekte und die Rolle der Salienz der ökologischen Norm für den internationalen Klimaschutz," KCN Schriftenreihe, FOM Hochschule für Oekonomie & Management, KCN KompetenzCentrum für nachhaltige Entwicklung, volume 3, number 3 edited by FOM Hochschule für Oekonomie & Management, KompetenzCentrum für nachhaltige Entwicklung (KCN), July.
    8. Stefano Carattini & Julia Blasch, 2020. "Nudging When the Descriptive Norm Is Low: Evidence from a Carbon Offsetting Field Experiment," CESifo Working Paper Series 8542, CESifo.
    9. Diederich, Johannes & Goeschl, Timo, 2017. "Does Mitigation Begin At Home?," Working Papers 0634, University of Heidelberg, Department of Economics.
    10. Martha A. Starr, 2015. "The Economics of Ethical Consumption," Working Papers 2015-01, American University, Department of Economics.
    11. Diederich, Johannes & Goeschl, Timo, 2018. "Voluntary action for climate change mitigation does not exhibit locational preferences," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 175-180.

  36. Göran Finnveden & Tomas Ekvall & Yevgeniya Arushanyan & Mattias Bisaillon & Greger Henriksson & Ulrika Gunnarsson Östling & Maria Ljunggren Söderman & Jenny Sahlin & Åsa Stenmarck & Johan Sundberg & J, 2013. "Policy Instruments towards a Sustainable Waste Management," Sustainability, MDPI, vol. 5(3), pages 1-41, February.

    Cited by:

    1. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    2. Nicolli, Francesco & Mazzanti, Massimiliano, 2013. "Landfill diversion in a decentralized setting: A dynamic assessment of landfill taxes," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 17-23.
    3. Suparak Suriyankietkaew & Phallapa Petison, 2019. "A Retrospective and Foresight: Bibliometric Review of International Research on Strategic Management for Sustainability, 1991–2019," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    4. Tuomo Eskelinen & Oswald Sydd & Miika Kajanus & David Fernández Gutiérrez & Miguel Mitsou & José M. Soriano Disla & Manuel Vals Sevilla & Johan Ib Hansen, 2022. "Fortifying Social Acceptance When Designing Circular Economy Business Models on Biowaste Related Products," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    5. Yihan Zhao & Rong Chen & Mitsuyasu Yabe & Buxin Han & Pingping Liu, 2021. "I Am Better Than Others: Waste Management Policies and Self-Enhancement Bias," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    6. Babak Nemat & Mohammad Razzaghi & Kim Bolton & Kamran Rousta, 2019. "The Role of Food Packaging Design in Consumer Recycling Behavior—A Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-23, August.
    7. Magnus Andersson & Maria Ljunggren Söderman & Björn A. Sandén, 2019. "Adoption of Systemic and Socio-Technical Perspectives in Waste Management, WEEE and ELV Research," Sustainability, MDPI, vol. 11(6), pages 1-26, March.
    8. Hao Yu & Wei Deng Solvang, 2016. "An Improved Multi-Objective Programming with Augmented ε -Constraint Method for Hazardous Waste Location-Routing Problems," IJERPH, MDPI, vol. 13(6), pages 1-21, May.
    9. Tomas Ekvall & Martin Hirschnitz-Garbers & Fabio Eboli & Aleksander Śniegocki, 2016. "A Systemic and Systematic Approach to the Development of a Policy Mix for Material Resource Efficiency," Sustainability, MDPI, vol. 8(4), pages 1-26, April.
    10. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    11. Xiangyun Chang & Junjie Fan & Yabing Zhao & Jie Wu, 2016. "Impact of China’s Recycling Subsidy Policy in the Product Life Cycle," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    12. Damien Giurco & Jade Herriman & Andrea Turner & Leah Mason & Stuart White & Dustin Moore & Frank Klostermann, 2015. "Integrated Resource Planning for Urban Waste Management," Resources, MDPI, vol. 4(1), pages 1-22, January.
    13. Justyna Woźniak & Katarzyna Pactwa, 2018. "Overview of Polish Mining Wastes with Circular Economy Model and Its Comparison with Other Wastes," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    14. Helén Williams & Fredrik Wikström & Katarina Wetter-Edman & Per Kristensson, 2018. "Decisions on Recycling or Waste: How Packaging Functions Affect the Fate of Used Packaging in Selected Swedish Households," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    15. Ahmad Nadim Azimi & Sébastien M. R. Dente & Seiji Hashimoto, 2020. "Analyzing Waste Management System Alternatives for Kabul City, Afghanistan: Considering Social, Environmental, and Economic Aspects," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
    16. Ljiljana Rodić & David C. Wilson, 2017. "Resolving Governance Issues to Achieve Priority Sustainable Development Goals Related to Solid Waste Management in Developing Countries," Sustainability, MDPI, vol. 9(3), pages 1-18, March.
    17. Maria Ljunggren Söderman & Ola Eriksson & Anna Björklund & Göran Östblom & Tomas Ekvall & Göran Finnveden & Yevgeniya Arushanyan & Jan-Olov Sundqvist, 2016. "Integrated Economic and Environmental Assessment of Waste Policy Instruments," Sustainability, MDPI, vol. 8(5), pages 1-21, April.
    18. Ek, Claes & Söderberg, Magnus, 2021. "Norm-based feedback on household waste: Large-scale field experiments in two Swedish municipalities," Working Papers in Economics 804, University of Gothenburg, Department of Economics.
    19. Jiménez-Rivero, Ana & García-Navarro, Justo, 2017. "Exploring factors influencing post-consumer gypsum recycling and landfilling in the European Union," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 116-123.
    20. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    21. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    22. Ahmad Nadim Azimi & Sébastien M. R. Dente & Seiji Hashimoto, 2020. "Social Life-Cycle Assessment of Household Waste Management System in Kabul City," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    23. Francesca Montevecchi, 2016. "Policy Mixes to Achieve Absolute Decoupling: A Case Study of Municipal Waste Management," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    24. Yevgeniya Arushanyan & Anna Björklund & Ola Eriksson & Göran Finnveden & Maria Ljunggren Söderman & Jan-Olov Sundqvist & Åsa Stenmarck, 2017. "Environmental Assessment of Possible Future Waste Management Scenarios," Energies, MDPI, vol. 10(2), pages 1-27, February.
    25. Oscar O. Ortíz-Rodríguez & William Ocampo-Duque & Laura I. Duque-Salazar, 2017. "Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia," Energies, MDPI, vol. 10(12), pages 1-13, December.

  37. Francesco Nicolli & Nick Johnstone & Patrik Söderholm, 2012. "Resolving failures in recycling markets: the role of technological innovation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(3), pages 261-288, July.

    Cited by:

    1. Cainelli, Giulio & D’Amato, Alessio & Mazzanti, Massimiliano, 2015. "Adoption of waste-reducing technology in manufacturing: Regional factors and policy issues," Resource and Energy Economics, Elsevier, vol. 39(C), pages 53-67.
    2. Francesco Nicolli & Francesco Vona, 2012. "The evolution of renewable energy policy in Oecd countries:aggregate indicators and determinants," Documents de Travail de l'OFCE 2012-13, Observatoire Francais des Conjonctures Economiques (OFCE).
    3. Yunpeng Sun & Asif Razzaq, 2022. "Composite fiscal decentralisation and green innovation: Imperative strategy for institutional reforms and sustainable development in OECD countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 944-957, October.
    4. Kunle Ibukun Olatayo & Paul T. Mativenga & Annlizé L. Marnewick, 2023. "Plastic value chain and performance metric framework for optimal recycling," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 601-623, April.
    5. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    6. Hirotaka Kumamaru & Kenji Takeuchi, 2023. "The recycled content of plastic products: estimating the impact of a recycling law on the input mix," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(3), pages 355-376, July.
    7. Marco Compagnoni & Marco Grazzi & Fabio Pieri & Chiara Tomasi, 2023. "Extended producer responsibility and trade flows in waste: The case of batteries," Working Papers 2023.22, Fondazione Eni Enrico Mattei.
    8. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    9. Xi Sun & Karsten Neuhoff, 2024. "Realizing the Value of Recycling – Assessing the Elements of a Policy Package," Discussion Papers of DIW Berlin 2069, DIW Berlin, German Institute for Economic Research.
    10. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
    11. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    12. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    13. Flavius Ioan Rovinaru & Mihaela Daciana Rovinaru & Adina Viorica Rus, 2019. "The Economic and Ecological Impacts of Dismantling End-of-Life Vehicles in Romania," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    14. Göran Finnveden & Tomas Ekvall & Yevgeniya Arushanyan & Mattias Bisaillon & Greger Henriksson & Ulrika Gunnarsson Östling & Maria Ljunggren Söderman & Jenny Sahlin & Åsa Stenmarck & Johan Sundberg & J, 2013. "Policy Instruments towards a Sustainable Waste Management," Sustainability, MDPI, vol. 5(3), pages 1-41, February.
    15. Ellen Sterk, 2023. "Incentives for Construction Clients in Germany to Choose Concrete with Recycled Aggregates," MAGKS Papers on Economics 202313, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    17. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    18. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    19. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    20. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    21. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.

  38. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.

    Cited by:

    1. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    2. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    3. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    4. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
    5. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
    6. Lecca, Patrizio & McGregor, Peter G. & Swales, Kim J. & Tamba, Marie, 2017. "The Importance of Learning for Achieving the UK's Targets for Offshore Wind," Ecological Economics, Elsevier, vol. 135(C), pages 259-268.
    7. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    8. Wei, Yi-Ming & Qiao, Lu & Lv, Xin, 2020. "The impact of mergers and acquisitions on technology learning in the petroleum industry," Energy Economics, Elsevier, vol. 88(C).
    9. Herrmann, J.K. & Savin, I., 2017. "Optimal policy identification: Insights from the German electricity market," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 71-90.
    10. Lina Escobar Rangel & François Lévêque, 2012. "Revisiting the cost escalation curse of nuclear power: New lessons from the French experience," Working Papers hal-00780566, HAL.
    11. Alemzero, David & Acheampong, Theophilus & Huaping, Sun, 2021. "Prospects of wind energy deployment in Africa: Technical and economic analysis," Renewable Energy, Elsevier, vol. 179(C), pages 652-666.
    12. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    13. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
    14. Marc Baudry & Clément Bonnet, 2017. "Demand pull instruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1705, Chaire Economie du climat.
    15. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    16. Menegaki, Angeliki N., 2014. "On energy consumption and GDP studies; A meta-analysis of the last two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 31-36.
    17. Lin, Boqiang & Li, Jianglong, 2015. "Analyzing cost of grid-connection of renewable energy development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1373-1382.
    18. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    19. Zhang, Shuwei & Bauer, Nico & Luderer, Gunnar & Kriegler, Elmar, 2014. "Role of technologies in energy-related CO2 mitigation in China within a climate-protection world: A scenarios analysis using REMIND," Applied Energy, Elsevier, vol. 115(C), pages 445-455.
    20. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending The Learning Curve," Climate Change and Sustainable Development 206836, Fondazione Eni Enrico Mattei (FEEM).
    21. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    22. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    23. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    24. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    25. Lehmann, Paul & Söderholm, Patrik, 2016. "Can technology-specific deployment policies be cost-effective? The case of renewable energy support schemes," UFZ Discussion Papers 1/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    26. Aldersey-Williams, John & Broadbent, Ian D. & Strachan, Peter A., 2019. "Better estimates of LCOE from audited accounts – A new methodology with examples from United Kingdom offshore wind and CCGT," Energy Policy, Elsevier, vol. 128(C), pages 25-35.
    27. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    28. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    29. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    30. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    31. Wenli Qiang & Shuwen Niu & Xiaojie Liu & Xiang Wang & Zhuo Jia & Runqi Dai, 2018. "Analysis of generation cost changes during China’s energy transition," Energy & Environment, , vol. 29(4), pages 456-472, June.
    32. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    33. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    34. Patrick Criqui & Silvana Mima & Philippe Menanteau & Alban Kitous, 2015. "Mitigation strategies and energy technology learning: an assessment with the POLES model," Post-Print halshs-00999280, HAL.
    35. Arias-Gaviria, Jessica & van der Zwaan, Bob & Kober, Tom & Arango-Aramburo, Santiago, 2017. "The prospects for Small Hydropower in Colombia," Renewable Energy, Elsevier, vol. 107(C), pages 204-214.
    36. Uwe Cantner & Holger Graf & Johannes Herrmann & Martin Kalthaus, 2014. "Inventor Networks in Renewable Energies: The Influence of the Policy Mix in Germany," Jena Economics Research Papers 2014-034, Friedrich-Schiller-University Jena, revised 28 Jan 2016.
    37. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    38. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    39. Díaz, Guzmán & Moreno, Blanca & Coto, José & Gómez-Aleixandre, Javier, 2015. "Valuation of wind power distributed generation by using Longstaff–Schwartz option pricing method," Applied Energy, Elsevier, vol. 145(C), pages 223-233.
    40. Osorio, Andrés F. & Arias-Gaviria, Jessica & Devis-Morales, Andrea & Acevedo, Diego & Velasquez, Héctor Iván & Arango-Aramburo, Santiago, 2016. "Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands," Energy Policy, Elsevier, vol. 98(C), pages 713-724.
    41. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    42. Arias-Gaviria, Jessica & Carvajal-Quintero, Sandra Ximena & Arango-Aramburo, Santiago, 2019. "Understanding dynamics and policy for renewable energy diffusion in Colombia," Renewable Energy, Elsevier, vol. 139(C), pages 1111-1119.
    43. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
    44. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    45. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    46. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    47. Subtil Lacerda, Juliana & van den Bergh, Jeroen C.J.M., 2020. "Effectiveness of an ‘open innovation’ approach in renewable energy: Empirical evidence from a survey on solar and wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    48. Pandey, Rita & Mehra, Meeta Keswani, 2015. "Role of Fiscal Instruments in Promoting Low-carbon Technology Innovation," Working Papers 15/147, National Institute of Public Finance and Policy.
    49. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    50. Herrmann, Johannes & Savin, Ivan, 2015. "Evolution of the electricity market in Germany: Identifying policy implications by an agent-based model," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112959, Verein für Socialpolitik / German Economic Association.
    51. Fischer, Carolyn & Hübler, Michael & Schenker, Oliver, 2021. "More birds than stones – A framework for second-best energy and climate policy adjustments," Journal of Public Economics, Elsevier, vol. 203(C).
    52. Partridge, Ian, 2013. "Renewable electricity generation in India—A learning rate analysis," Energy Policy, Elsevier, vol. 60(C), pages 906-915.
    53. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    54. Desroches, Louis-Benoit & Ganeshalingam, Mohan, 2015. "The dynamics of incremental costs of efficient television display technologies," Technological Forecasting and Social Change, Elsevier, vol. 90(PB), pages 562-574.
    55. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
    56. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    57. Xin-gang, Zhao & Wei, Wang & Jieying, Wang, 2022. "The policy effects of demand-pull and technology-push on the diffusion of wind power: A scenario analysis based on system dynamics approach," Energy, Elsevier, vol. 261(PA).
    58. Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
    59. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    60. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    61. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    62. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
    63. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
    64. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    65. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    66. Lina Escobar Rangel and Francois Leveque, 2015. "Revisiting the Cost Escalation Curse of Nuclear Power: New Lessons from the French Experience," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    67. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    68. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
    69. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).

  39. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.

    Cited by:

    1. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    2. Gert Bijnens & Jozef Konings & Stijn Vanormelingen, 2022. "The impact of electricity prices on European manufacturing jobs," Applied Economics, Taylor & Francis Journals, vol. 54(1), pages 38-56, January.
    3. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    4. Bijnens, Gert & Hutchinson, John & Konings, Jozef & Saint Guilhem, Arthur, 2021. "The interplay between green policy, electricity prices, financial constraints and jobs: firm-level evidence," Working Paper Series 2537, European Central Bank.
    5. Cox, Michael & Peichl, Andreas & Pestel, Nico & Siegloch, Sebastian, 2013. "Labor Demand Effects of Rising Electricity Prices: Evidence for Germany," IZA Policy Papers 74, Institute of Labor Economics (IZA).
    6. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    7. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    8. Florian Jaehn & Raisa Juopperi, 2019. "A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-39, February.
    9. Bergquist, Ann-Kristin & Keskitalo, E. Carina H., 2016. "Regulation versus deregulation. Policy divergence between Swedish forestry and the Swedish pulp and paper industry after the 1990s," Forest Policy and Economics, Elsevier, vol. 73(C), pages 10-17.

  40. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.

    Cited by:

    1. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
    2. J. Scott Holladay & Steven Soloway, 2015. "The Environmental Impacts of Fuel Switching Power Plants," Working Papers 2015-05, University of Tennessee, Department of Economics.
    3. Simona Bigerna & Maria Chiara D’Errico & Paolo Polinori, 2022. "Sustainable Power Generation in Europe: A Panel Data Analysis of the Effects of Market and Environmental Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 445-479, October.
    4. Harrison Fell & Daniel T. Kaffine, 2014. "A one-two punch: Joint effects of natural gas abundance and renewables on coal-fired power plants," Working Papers 2014-10, Colorado School of Mines, Division of Economics and Business.
    5. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
    6. Asche, Frank & Misund, Bård & Sikveland, Marius, 2013. "The relationship between spot and contract gas prices in Europe," Energy Economics, Elsevier, vol. 38(C), pages 212-217.
    7. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2021. "How effective is carbon pricing? A machine learning approach to policy evaluation," ZEW Discussion Papers 21-039, ZEW - Leibniz Centre for European Economic Research.
    8. Orlov, Anton & Aaheim, Asbjørn, 2017. "Economy-wide effects of international and Russia's climate policies," Energy Economics, Elsevier, vol. 68(C), pages 466-477.
    9. Bruninx, Kenneth & Ovaere, Marten & Delarue, Erik, 2020. "The long-term impact of the market stability reserve on the EU emission trading system," Energy Economics, Elsevier, vol. 89(C).
    10. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    11. Ouedraogo, Nadia S., 2013. "Energy consumption and human development: Evidence from a panel cointegration and error correction model," Energy, Elsevier, vol. 63(C), pages 28-41.
    12. Saam, Marianne & Papageorgiou, Chris & Schulte, Patrick, 2014. "Elasticity of Substitution between Clean and Dirty Energy Inputs - A Macroeconomic Perspective," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100414, Verein für Socialpolitik / German Economic Association.
    13. Rui Liu & Qiushuang Li & Yingqi Zhao, 2017. "Analysis of Existing Problems and Improvement Schemes for Substituting Electricity for Scattered Coal in China," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    14. Roberts, Gavin, 2019. "Revisiting the Drivers of Natural Gas Prices. A replication study of Brown & Yücel (The Energy Journal, 2008)," International Journal for Re-Views in Empirical Economics (IREE), ZBW - Leibniz Information Centre for Economics, vol. 3(2019-2), pages 1-24.
    15. Julien Chevallier & Stéphane Goutte, 2017. "Estimation of Lévy-driven Ornstein–Uhlenbeck processes: application to modeling of $$\hbox {CO}_2$$ CO 2 and fuel-switching," Annals of Operations Research, Springer, vol. 255(1), pages 169-197, August.
    16. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
    17. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    18. Jarait, Jurate & Di Maria, Corrado, 2014. "Did the EU ETS make a difference? An empirical assessment using Lithuanian firm-level data," CERE Working Papers 2014:2, CERE - the Center for Environmental and Resource Economics.
    19. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    20. Cabello Eras, Juan José & Mendoza Fandiño, Jorge Mario & Sagastume Gutiérrez, Alexis & Rueda Bayona, Juan Gabriel & Sofan German, Stiven Javier, 2022. "The inequality of electricity consumption in Colombia. Projections and implications," Energy, Elsevier, vol. 249(C).
    21. J. Scott Holladay and Steven Soloway, 2016. "The Environmental Impacts of Fuel Switching Electricity Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    22. Meyer Andrew & Pac Grzegorz, 2015. "How Responsive Are EU Coal-Burning Plants to Changes in Energy Prices?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 15(3), pages 1481-1506, July.
    23. Pompei, Fabrizio, 2013. "Heterogeneous effects of regulation on the efficiency of the electricity industry across European Union countries," Energy Economics, Elsevier, vol. 40(C), pages 569-585.
    24. Knittel, Christopher R. & Metaxoglou, Konstantinos & Trindade, André, 2019. "Environmental implications of market structure: Shale gas and electricity markets," International Journal of Industrial Organization, Elsevier, vol. 63(C), pages 511-550.

  41. Söderholm, Patrik & Tilton, John E., 2012. "Material efficiency: An economic perspective," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 75-82.

    Cited by:

    1. Filippo Corsini & Marco Frey, 2023. "Exploring the development of environmentally sustainable products through reward-based crowdfunding," Electronic Commerce Research, Springer, vol. 23(2), pages 1183-1207, June.
    2. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa, 2013. "Long-term global availability of steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 81-91.
    3. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    4. Yulia Lapko & Andrea Trianni & Cali Nuur & Donato Masi, 2019. "In Pursuit of Closed‐Loop Supply Chains for Critical Materials: An Exploratory Study in the Green Energy Sector," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 182-196, February.
    5. Mizanur Rahman, S.M. & Kim, Junbeum & Lerondel, Gilles & Bouzidi, Youcef & Nomenyo, Komla & Clerget, Laure, 2017. "Missing research focus in end-of-life management of light-emitting diode (LED) lamps," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 256-258.
    6. Peiyang Su & Ying Peng & Qidan Hu & Ruwen Tan, 2020. "Incentive Mechanism and Subsidy Design for Construction and Demolition Waste Recycling under Information Asymmetry with Reciprocal Behaviors," IJERPH, MDPI, vol. 17(12), pages 1-26, June.
    7. Christis, Maarten & Geerken, Theo & Vercalsteren, An & Vrancken, Karl C., 2015. "Value in sustainable materials management strategies for open economies case of Flanders (Belgium)," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 110-124.
    8. Lahcen, Bart & Eyckmans, Johan & Rousseau, Sandra & Dams, Yoko & Brusselaers, Jan, 2022. "Modelling the circular economy: Introducing a supply chain equilibrium approach," Ecological Economics, Elsevier, vol. 197(C).
    9. Kristin Leismann & Martina Schmitt & Holger Rohn & Carolin Baedeker, 2013. "Collaborative Consumption: Towards a Resource-Saving Consumption Culture," Resources, MDPI, vol. 2(3), pages 1-20, July.
    10. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    11. Cooper, Simone & Skelton, Alexandra C.H. & Owen, Anne & Densley-Tingley, Danielle & Allwood, Julian M., 2016. "A multi-method approach for analysing the potential employment impacts of material efficiency," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 54-66.
    12. Ruth Lane, 2014. "Understanding the Dynamic Character of Value in Recycling Metals from Australia," Resources, MDPI, vol. 3(2), pages 1-16, April.
    13. Jin, Yanya & Kim, Junbeum & Guillaume, Bertrand, 2016. "Review of critical material studies," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 77-87.
    14. Zeng, Xianlai & Li, Jinhui, 2013. "Implications for the carrying capacity of lithium reserve in China," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 58-63.
    15. John Ryter & Xinkai Fu & Karan Bhuwalka & Richard Roth & Elsa Olivetti, 2022. "Assessing recycling, displacement, and environmental impacts using an economics‐informed material system model," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1010-1024, June.
    16. Miller, Sabbie A. & Srubar, Wil V. & Billington, Sarah L. & Lepech, Michael D., 2015. "Integrating durability-based service-life predictions with environmental impact assessments of natural fiber–reinforced composite materials," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 72-83.

  42. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.

    Cited by:

    1. Riekkola, Anna Krook & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2013. "Challenges in Soft-Linking: The Case of EMEC and TIMES-Sweden," Working Papers 133, National Institute of Economic Research.
    2. Milan Šcasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Working Papers 2015.84, Fondazione Eni Enrico Mattei.
    3. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    4. Jonas Forsberg & Anna Krook-Riekkola, 2021. "Recoupling Climate Change and Air Quality: Exploring Low-Emission Options in Urban Transportation Using the TIMES-City Model," Energies, MDPI, vol. 14(11), pages 1-26, May.
    5. Borasio, M. & Moret, S., 2022. "Deep decarbonisation of regional energy systems: A novel modelling approach and its application to the Italian energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    7. Pei-Ing Wu & Je-Liang Liou & Ta-Ken Huang, 2022. "Evaluation of Benefits and Health Co-Benefits of GHG Reduction for Taiwan’s Industrial Sector under a Carbon Charge in 2023–2030," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    8. Seljom, Pernille & Lindberg, Karen Byskov & Tomasgard, Asgeir & Doorman, Gerard & Sartori, Igor, 2017. "The impact of Zero Energy Buildings on the Scandinavian energy system," Energy, Elsevier, vol. 118(C), pages 284-296.
    9. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    10. Hildingsson, Roger & Johansson, Bengt, 2016. "Governing low-carbon energy transitions in sustainable ways: Potential synergies and conflicts between climate and environmental policy objectives," Energy Policy, Elsevier, vol. 88(C), pages 245-252.
    11. Liu, Li-Jing & Liang, Qiao-Mei & Creutzig, Felix & Ward, Hauke & Zhang, Kun, 2020. "Sweet spots are in the food system: Structural adjustments to co-control regional pollutants and national GHG emissions in China," Ecological Economics, Elsevier, vol. 171(C).
    12. Balderas Torres, Arturo & MacMillan, Douglas C. & Skutsch, Margaret & Lovett, Jon C., 2015. "Reprint of ‘Yes-in-my-backyard’: Spatial differences in the valuation of forest services and local co-benefits for carbon markets in México," Ecological Economics, Elsevier, vol. 117(C), pages 283-294.
    13. Balderas Torres, Arturo & MacMillan, Douglas C. & Skutsch, Margaret & Lovett, Jon C., 2015. "‘Yes-in-my-backyard’: Spatial differences in the valuation of forest services and local co-benefits for carbon markets in México," Ecological Economics, Elsevier, vol. 109(C), pages 130-141.
    14. Kiula, Olga & Markandya, Anil & Ščasný, Milan & Menkyna Tsuchimoto, Fusako, 2014. "The Economic and Environmental Effects of Taxing Air Pollutants and CO2: Lessons from a Study of the Czech Republic," MPRA Paper 66599, University Library of Munich, Germany, revised Oct 2015.

  43. Söderholm, Patrik, 2011. "Taxing virgin natural resources: Lessons from aggregates taxation in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 911-922.

    Cited by:

    1. Santosh Kumar Sahu & Prantik Bagchi, 2023. "Waste from production: an analysis at the firm level," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(3), pages 2641-2656, June.
    2. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.

  44. Blomberg, Jerry & Söderholm, Patrik, 2011. "Factor demand flexibility in the primary aluminium industry: Evidence from stagnating and expanding regions," Resources Policy, Elsevier, vol. 36(3), pages 238-248, September.

    Cited by:

    1. Florian Fizaine, 2019. "The Economics of Recycling Rate: new insights from a Waste Electrical and Electronic Equipment," Policy Papers 2019.01, FAERE - French Association of Environmental and Resource Economists.
    2. Fizaine, Florian, 2020. "The economics of recycling rate: New insights from waste electrical and electronic equipment," Resources Policy, Elsevier, vol. 67(C).
    3. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
    4. Jerry Blomberg & Bo Jonsson, 2011. "Evaluating the efficiency of the global primary aluminum smelting industry: a data envelopment approach," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 24(1), pages 29-44, July.
    5. Vignesh, B. Ram & Saravanan, M. & Marimuthu, P., 2021. "Sustainability analysis on magnsium ore as a replacement in the applications of mining environment," Resources Policy, Elsevier, vol. 71(C).
    6. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).

  45. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.

    Cited by:

    1. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    2. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    3. Iskin, Ibrahim & Daim, Tugrul & Kayakutlu, Gulgun & Altuntas, Mehmet, 2012. "Exploring renewable energy pricing with analytic network process — Comparing a developed and a developing economy," Energy Economics, Elsevier, vol. 34(4), pages 882-891.
    4. de Wildt, Tristan E. & Boijmans, Anne R. & Chappin, Emile J.L. & Herder, Paulien M., 2021. "An ex ante assessment of value conflicts and social acceptance of sustainable heating systems," Energy Policy, Elsevier, vol. 153(C).
    5. Martin, Nigel & Rice, John, 2015. "Improving Australia's renewable energy project policy and planning: A multiple stakeholder analysis," Energy Policy, Elsevier, vol. 84(C), pages 128-141.
    6. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    7. Bórawski, Piotr & Bełdycka-Bórawska, Aneta & Jankowski, Krzysztof Jóżef & Dubis, Bogdan & Dunn, James W., 2020. "Development of wind energy market in the European Union," Renewable Energy, Elsevier, vol. 161(C), pages 691-700.
    8. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    9. de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
    10. Huey-Shian Chung, 2021. "Taiwan’s Offshore Wind Energy Policy: From Policy Dilemma to Sustainable Development," Sustainability, MDPI, vol. 13(18), pages 1-16, September.
    11. Weaver, Tyson, 2012. "Financial appraisal of operational offshore wind energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5110-5120.
    12. Salvador, Santiago & Gimeno, Luis & Sanz Larruga, F. Javier, 2019. "The influence of maritime spatial planning on the development of marine renewable energies in Portugal and Spain: Legal challenges and opportunities," Energy Policy, Elsevier, vol. 128(C), pages 316-328.
    13. Maria Pettersson & Patrik Söderholm, 2012. "Reforming Wind Power Planning and Policy: Experiences from the Nordic Countries," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 9(04), pages 54-60, February.
    14. Graziano, Marcello & Lecca, Patrizio & Musso, Marta, 2017. "Historic paths and future expectations: The macroeconomic impacts of the offshore wind technologies in the UK," Energy Policy, Elsevier, vol. 108(C), pages 715-730.
    15. Santiago Salvador & Marta Chantal Ribeiro, 2023. "Socio‐economic, legal, and political context of offshore renewable energies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    16. Dimitra G. Vagiona & Manos Kamilakis, 2018. "Sustainable Site Selection for Offshore Wind Farms in the South Aegean—Greece," Sustainability, MDPI, vol. 10(3), pages 1-18, March.

  46. Ejdemo, Thomas & Söderholm, Patrik, 2011. "Mining investment and regional development: A scenario-based assessment for Northern Sweden," Resources Policy, Elsevier, vol. 36(1), pages 14-21, March.

    Cited by:

    1. Söderholm, Patrik & Svahn, Nanna, 2015. "Mining, regional development and benefit-sharing in developed countries," Resources Policy, Elsevier, vol. 45(C), pages 78-91.
    2. Lopes, Alef & Ruiz, Ricardo & Ribeiro, Rafael & Cantelmo, Weslley, 2023. "Linkages in the metal mining industry: Local job multipliers in Brazil," Resources Policy, Elsevier, vol. 82(C).
    3. Katarzyna Pactwa & Justyna Woźniak & Michał Dudek, 2020. "Sustainable Social and Environmental Evaluation of Post-Industrial Facilities in a Closed Loop Perspective in Coal-Mining Areas in Poland," Sustainability, MDPI, vol. 13(1), pages 1-16, December.
    4. Bjerke, Lina & Mellander, Charlotta, 2019. "Mover Stayer Winner Loser - A study of income effects from rural migration," Working Paper Series in Economics and Institutions of Innovation 476, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    5. Somaye Narrei & Majid Ataee-pour, 2021. "Assessment of personal preferences concerning the social impacts of mining with choice experiment method," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 39-49, April.
    6. Qi, Tianyu & Zhou, Li & Zhang, Xiliang & Ren, Xiangkun, 2012. "Regional economic output and employment impact of coal-to-liquids (CTL) industry in China: An input–output analysis," Energy, Elsevier, vol. 46(1), pages 259-263.
    7. Fleming, David A. & Measham, Thomas G., 2014. "Local job multipliers of mining," Resources Policy, Elsevier, vol. 41(C), pages 9-15.
    8. Bo Karlsson & Monika Kurkkio & Anders Hersinger, 2019. "The role of the controller in strategic capital investment projects: bridging the gap of multiple topoi," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 813-838, September.
    9. Ejdemo, Thomas & Söderholm, Patrik, 2015. "Wind power, regional development and benefit-sharing: The case of Northern Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 476-485.
    10. Windle, Jill & Rolfe, John, 2013. "Using discrete choice experiments to assess the preferences of new mining workforce to commute or relocate to the Surat Basin in Australia," Resources Policy, Elsevier, vol. 38(2), pages 169-180.
    11. Håkan Tarras-Wahlberg, 2023. "Mining and taxation in Sweden," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 291-299, June.
    12. Tano, Sofia & Pettersson, Örjan & Stjernström, Olof, 2016. "Labour income effects of the recent “mining boom” in northern Sweden," Resources Policy, Elsevier, vol. 49(C), pages 31-40.
    13. Theodore Connell-Variy & Björn Berggren & Tony McGough, 2021. "Housing Markets and Resource Sector Fluctuations: A Cross-Border Comparative Analysis," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    14. Thomas Moritz & Thomas Ejdemo & Patrik Söderholm & Linda Wårell, 2017. "The local employment impacts of mining: an econometric analysis of job multipliers in northern Sweden," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 30(1), pages 53-65, April.
    15. Atienza, Miguel & Lufin, Marcelo & Soto, Juan, 2021. "Mining linkages in the Chilean copper supply network and regional economic development," Resources Policy, Elsevier, vol. 70(C).
    16. Minati Sahoo & Dharmabrata Mohapatra & Dukhabandhu Sahoo, 2018. "Livelihood Dynamism in Mining Region of Odisha, India," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 8(1), pages 07-15, January.
    17. Törmä, Hannu & Kujala, Susanna & Kinnunen, Jouko, 2015. "The employment and population impacts of the boom and bust of Talvivaara mine in the context of severe environmental accidents – A CGE evaluation," Resources Policy, Elsevier, vol. 46(P2), pages 127-138.

  47. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.

    Cited by:

    1. Wissner, Matthias, 2014. "Regulation of district-heating systems," Utilities Policy, Elsevier, vol. 31(C), pages 63-73.
    2. Sandberg, Eli & Sneum, Daniel Møller & Trømborg, Erik, 2018. "Framework conditions for Nordic district heating - Similarities and differences, and why Norway sticks out," Energy, Elsevier, vol. 149(C), pages 105-119.
    3. Diana Korsakaite & Darius Bieksa & Egle Bieksiene, 2018. "Third-party access in district heating: Lithuanian case analysis," Competition and Regulation in Network Industries, , vol. 19(3-4), pages 218-241, September.
    4. Bürger, Veit & Steinbach, Jan & Kranzl, Lukas & Müller, Andreas, 2019. "Third party access to district heating systems - Challenges for the practical implementation," Energy Policy, Elsevier, vol. 132(C), pages 881-892.
    5. Wissner, Matthias, 2013. "Regulierungsbedürftigkeit des Fernwärmesektors," WIK Discussion Papers 381, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH.
    6. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    7. Billerbeck, Anna & Breitschopf, Barbara & Winkler, Jenny & Bürger, Veit & Köhler, Benjamin & Bacquet, Alexandre & Popovski, Eftim & Fallahnejad, Mostafa & Kranzl, Lukas & Ragwitz, Mario, 2023. "Policy frameworks for district heating: A comprehensive overview and analysis of regulations and support measures across Europe," Energy Policy, Elsevier, vol. 173(C).
    8. Zhang, Junli & Ge, Bin & Xu, Hongsheng, 2013. "An equivalent marginal cost-pricing model for the district heating market," Energy Policy, Elsevier, vol. 63(C), pages 1224-1232.
    9. Hammar, Henrik & Sjöström, Magnus, 2011. "Accounting for behavioral effects of increases in the carbon dioxide (CO2) tax in revenue estimation in Sweden," Energy Policy, Elsevier, vol. 39(10), pages 6672-6676, October.
    10. Egüez, Alejandro, 2020. "Energy Efficiency, District Heating and Waste Management," Umeå Economic Studies 979, Umeå University, Department of Economics.
    11. Park, Sun-Young & Lee, Kyoung-Sil & Yoo, Seung-Hoon, 2016. "Economies of scale in the Korean district heating system: A variable cost function approach," Energy Policy, Elsevier, vol. 88(C), pages 197-203.
    12. Pažėraitė, Aušra & Lekavičius, Vidas & Gatautis, Ramūnas, 2022. "District heating system as the infrastructure for competition among producers in the heat market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    13. Burlinson, Andrew & Giulietti, Monica & Battisti, Giuliana, 2018. "Technology adoption, consumer inattention and heuristic decision-making: Evidence from a UK district heating scheme," Research Policy, Elsevier, vol. 47(10), pages 1873-1886.
    14. Magnusson, Dick, 2012. "Swedish district heating—A system in stagnation: Current and future trends in the district heating sector," Energy Policy, Elsevier, vol. 48(C), pages 449-459.
    15. Egüez, Alejandro, 2021. "District heating network ownership and prices: The case of an unregulated natural monopoly," Utilities Policy, Elsevier, vol. 72(C).
    16. Jonas Hinker & Thomas Wohlfahrt & Emily Drewing & Sergio Felipe Contreras Paredes & Daniel Mayorga González & Johanna M. A. Myrzik, 2018. "Adaptable Energy Systems Integration by Modular, Standardized and Scalable System Architectures: Necessities and Prospects of Any Time Transition," Energies, MDPI, vol. 11(3), pages 1-17, March.
    17. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.

  48. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.

    Cited by:

    1. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    2. Rave, Tilmann & Triebswetter, Ursula & Wackerbauer, Johann, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," Studien zum deutschen Innovationssystem 10-2013, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    3. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    4. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    5. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
    6. Wei, Yi-Ming & Qiao, Lu & Lv, Xin, 2020. "The impact of mergers and acquisitions on technology learning in the petroleum industry," Energy Economics, Elsevier, vol. 88(C).
    7. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    8. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2018. "Policy convergence as a multifaceted concept: the case of renewable energy policies in the European Union," Journal of Public Policy, Cambridge University Press, vol. 38(3), pages 361-387, September.
    9. del Río, Pablo, 2012. "The dynamic efficiency of feed-in tariffs: The impact of different design elements," Energy Policy, Elsevier, vol. 41(C), pages 139-151.
    10. Chen, Tianqi & Zhang, Yi & Jiang, Cailou & Li, Hui, 2023. "How does energy efficiency affect employment? Evidence from Chinese cities," Energy, Elsevier, vol. 280(C).
    11. Gersbach, Hans & Riekhof, Marie-Catherine, 2021. "Permit markets, carbon prices and the creation of innovation clusters," Resource and Energy Economics, Elsevier, vol. 65(C).
    12. Madalina-Gabriela ANGHEL & Constantin ANGHELACHE & Alexandru MANOLE & Ana CARP, 2017. "The Strategy Of The European Union Member States In The Field Of Energy," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 65(8), pages 19-34, August.
    13. Qiao, Lu & Dong, Weijia & Lv, Xin, 2023. "The heterogeneous impacts of M&As on renewable energy firms’ innovation: Comparative analysis of China, the US and EU," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 306-323.
    14. Marc Baudry & Clément Bonnet, 2017. "Demand pull instruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1705, Chaire Economie du climat.
    15. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    16. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    17. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2017. "The Employment Impact Of Private And Public Actions For Energy Efficiency: Evidence From European Industries," Departmental Working Papers of Economics - University 'Roma Tre' 0227, Department of Economics - University Roma Tre.
    18. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    19. Valeria Costantini & Francesco Crespi & Elena Paglialunga, 2019. "Capital–energy substitutability in manufacturing sectors: methodological and policy implications," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 157-182, June.
    20. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
    21. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    22. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    23. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    24. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    25. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    26. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    27. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
    28. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    29. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    30. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    31. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    32. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    33. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    34. Lee, Jungwoo & Yang, Jae-Suk, 2019. "Global energy transitions and political systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    35. Hille, Erik & Oelker, Thomas J., 2023. "International expansion of renewable energy capacities: The role of innovation and choice of policy instruments," Ecological Economics, Elsevier, vol. 204(PA).
    36. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
    37. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    38. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    39. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    40. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    41. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    42. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," CESifo Working Paper Series 5442, CESifo.
    43. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    44. Pandey, Rita & Mehra, Meeta Keswani, 2015. "Role of Fiscal Instruments in Promoting Low-carbon Technology Innovation," Working Papers 15/147, National Institute of Public Finance and Policy.
    45. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    46. Ren, Qiuzhen & Albrecht, Johan, 2023. "Toward circular economy: The impact of policy instruments on circular economy innovation for European small medium enterprises," Ecological Economics, Elsevier, vol. 207(C).
    47. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    48. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    49. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," NBER Working Papers 21415, National Bureau of Economic Research, Inc.
    50. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
    51. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    52. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    53. Valeria Costantini & Elena Paglialunga, 2014. "Elasticity of substitution in capital-energy relationships: how central is a sector-based panel estimation approach?," SEEDS Working Papers 1314, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised May 2014.
    54. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    55. Grafström, Jonas & Jaunky, Vishal, 2017. "Convergence of Incentive Capabilities within the European Union," Ratio Working Papers 301, The Ratio Institute.
    56. Sung, Bongsuk & Song, Woo-Yong, 2013. "Causality between public policies and exports of renewable energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 95-104.
    57. Grafström, Jonas, 2017. "An Econometric Analysis of Divergence of Renewable Energy Invention Efforts in Europe," Ratio Working Papers 295, The Ratio Institute.
    58. Grafström, Jonas & Söderholm, Patrik & Gawel, Erik & Lehmann, Paul & Strunz, Sebastian, 2017. "Knowledge accumulation from public renewable energy R&D in the European Union: Converging or diverging trends?," UFZ Discussion Papers 5/2017, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    59. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    60. Hervás Soriano, Fernando & Mulatero, Fulvio, 2011. "EU Research and Innovation (R&I) in renewable energies: The role of the Strategic Energy Technology Plan (SET-Plan)," Energy Policy, Elsevier, vol. 39(6), pages 3582-3590, June.
    61. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    62. Jonas Grafström, 2018. "Divergence of renewable energy invention efforts in Europe: an econometric analysis based on patent counts," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 829-859, October.
    63. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    64. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).

  49. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.

    Cited by:

    1. Fjaestad, Maja, 2013. "Winds of time: Lessons from Utö in the Stockholm Archipelago, 1990–2001," Energy Policy, Elsevier, vol. 62(C), pages 124-130.
    2. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
    3. Enevoldsen, Peter, 2018. "A socio-technical framework for examining the consequences of deforestation: A case study of wind project development in Northern Europe," Energy Policy, Elsevier, vol. 115(C), pages 138-147.
    4. Marc Baudry & Clément Bonnet, 2017. "Demand pull instruments and the development of wind power in Europe: A counter-factual analysis," Working Papers 1705, Chaire Economie du climat.
    5. Meier, Jan-Niklas & Lehmann, Paul, 2022. "Optimal federal co-regulation of renewable energy deployment," Resource and Energy Economics, Elsevier, vol. 70(C).
    6. Lindvall, Daniel, 2023. "Why municipalities reject wind power: A study on municipal acceptance and rejection of wind power instalments in Sweden," Energy Policy, Elsevier, vol. 180(C).
    7. Watson, Ian & Betts, Stephen & Rapaport, Eric, 2012. "Determining appropriate wind turbine setback distances: Perspectives from municipal planners in the Canadian provinces of Nova Scotia, Ontario, and Quebec," Energy Policy, Elsevier, vol. 41(C), pages 782-789.
    8. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    9. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    10. Ejdemo, Thomas & Söderholm, Patrik, 2015. "Wind power, regional development and benefit-sharing: The case of Northern Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 476-485.
    11. Söderholm, Kristina & Söderholm, Patrik & Helenius, Heidi & Pettersson, Maria & Viklund, Roine & Masloboev, Vladimir & Mingaleva, Tatiana & Petrov, Viktor, 2015. "Environmental regulation and competitiveness in the mining industry: Permitting processes with special focus on Finland, Sweden and Russia," Resources Policy, Elsevier, vol. 43(C), pages 130-142.
    12. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    13. Iglesias, Guillermo & del Río, Pablo & Dopico, Jesús Ángel, 2011. "Policy analysis of authorisation procedures for wind energy deployment in Spain," Energy Policy, Elsevier, vol. 39(7), pages 4067-4076, July.
    14. Marc Baudry & Clément Bonnet, 2019. "Demand-Pull Instruments and the Development of Wind Power in Europe: A Counterfactual Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(2), pages 385-429, June.
    15. Hildingsson, Roger & Johansson, Bengt, 2016. "Governing low-carbon energy transitions in sustainable ways: Potential synergies and conflicts between climate and environmental policy objectives," Energy Policy, Elsevier, vol. 88(C), pages 245-252.
    16. Siyal, Shahid Hussain & Mörtberg, Ulla & Mentis, Dimitris & Welsch, Manuel & Babelon, Ian & Howells, Mark, 2015. "Wind energy assessment considering geographic and environmental restrictions in Sweden: A GIS-based approach," Energy, Elsevier, vol. 83(C), pages 447-461.
    17. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
    18. Teschner, Na'ama & Alterman, Rachelle, 2018. "Preparing the ground: Regulatory challenges in siting small-scale wind turbines in urban areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1660-1668.
    19. Mosher, J.N. & Corscadden, K.W., 2012. "Agriculture's contribution to the renewable energy sector: Policy and economics – Do they add up?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4157-4164.
    20. Blindheim, Bernt, 2013. "Implementation of wind power in the Norwegian market; the reason why some of the best wind resources in Europe were not utilised by 2010," Energy Policy, Elsevier, vol. 58(C), pages 337-346.

  50. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.

    Cited by:

    1. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    2. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    3. Stamatios Ntanos & Grigorios L. Kyriakopoulos & Garyfallos Arabatzis & Vasilios Palios & Miltiadis Chalikias, 2018. "Environmental Behavior of Secondary Education Students: A Case Study at Central Greece," Sustainability, MDPI, vol. 10(5), pages 1-22, May.
    4. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    5. Tørnblad, Silje H. & Kallbekken, Steffen & Korneliussen, Kristine & Mideksa, Torben K., 2014. "Using mobility management to reduce private car use: Results from a natural field experiment in Norway," Transport Policy, Elsevier, vol. 32(C), pages 9-15.
    6. David Boto-Garcìa & Alessandro Bucciol, 2019. "Climate Change: Personal Responsibility and Energy Saving," Working Papers 02/2019, University of Verona, Department of Economics.
    7. Vassileva, Iana & Dahlquist, Erik & Wallin, Fredrik & Campillo, Javier, 2013. "Energy consumption feedback devices’ impact evaluation on domestic energy use," Applied Energy, Elsevier, vol. 106(C), pages 314-320.
    8. Vassileva, Iana & Odlare, Monica & Wallin, Fredrik & Dahlquist, Erik, 2012. "The impact of consumers’ feedback preferences on domestic electricity consumption," Applied Energy, Elsevier, vol. 93(C), pages 575-582.
    9. Louis-Gaetan Giraudet & Céline Guivarch & Philippe Quirion, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Post-Print hal-00715345, HAL.
    10. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    11. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    12. Marin, Giovanni & Palma, Alessandro, 2016. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Energy: Resources and Markets 230687, Fondazione Eni Enrico Mattei (FEEM).
    13. Botetzagias, Iosif & Malesios, Chrisovaladis & Poulou, Dimitra, 2014. "Electricity curtailment behaviors in Greek households: Different behaviors, different predictors," Energy Policy, Elsevier, vol. 69(C), pages 415-424.
    14. Nilsson, Anders & Lazarevic, David & Brandt, Nils & Kordas, Olga, 2018. "Household responsiveness to residential demand response strategies: Results and policy implications from a Swedish field study," Energy Policy, Elsevier, vol. 122(C), pages 273-286.
    15. Ohler, Adrienne M. & Billger, Sherrilyn M., 2014. "Does environmental concern change the tragedy of the commons? Factors affecting energy saving behaviors and electricity usage," Ecological Economics, Elsevier, vol. 107(C), pages 1-12.
    16. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    17. Ramos, Ana & Labandeira, Xavier & Löschel, Andreas, 2015. "Pro-environmental households and energy efficiency in Spain," CAWM Discussion Papers 80, University of Münster, Münster Center for Economic Policy (MEP).
    18. Adnane Kendel & Nathalie Lazaric & Kevin Maréchal, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Post-Print halshs-01630972, HAL.
    19. Jaime Torres, Mónica M. & Carlsson, Fredrik, 2018. "Direct and spillover effects of a social information campaign on residential water-savings," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 222-243.
    20. Wang, Zhaohua & Wang, Xiaomeng & Guo, Dongxue, 2017. "Policy implications of the purchasing intentions towards energy-efficient appliances among China’s urban residents: Do subsidies work?," Energy Policy, Elsevier, vol. 102(C), pages 430-439.
    21. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    22. Hong Tian & Xinyu Liu, 2022. "Pro-Environmental Behavior Research: Theoretical Progress and Future Directions," IJERPH, MDPI, vol. 19(11), pages 1-16, May.
    23. Tan, Chin-Seang & Ooi, Hooi-Yin & Goh, Yen-Nee, 2017. "A moral extension of the theory of planned behavior to predict consumers’ purchase intention for energy-efficient household appliances in Malaysia," Energy Policy, Elsevier, vol. 107(C), pages 459-471.
    24. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    25. Muhammad Yaseen Bhutto & Xiaohui Liu & Yasir Ali Soomro & Myriam Ertz & Yasser Baeshen, 2020. "Adoption of Energy-Efficient Home Appliances: Extending the Theory of Planned Behavior," Sustainability, MDPI, vol. 13(1), pages 1-25, December.
    26. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.
    27. Véronique Vasseur & Anne-Francoise Marique & Vladimir Udalov, 2019. "A Conceptual Framework to Understand Households’ Energy Consumption," Energies, MDPI, vol. 12(22), pages 1-22, November.
    28. Park, Eunil & Kwon, Sang Jib, 2017. "What motivations drive sustainable energy-saving behavior?: An examination in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 494-502.
    29. Muhammad Yaseen Bhutto & Yasir Ali Soomro & Hailan Yang, 2022. "Extending the Theory of Planned Behavior: Predicting Young Consumer Purchase Behavior of Energy-Efficient Appliances (Evidence From Developing Economy)," SAGE Open, , vol. 12(1), pages 21582440221, February.
    30. Kabeya Clement Mulamba, 2020. "Relationship between education and households? electricity-saving behaviour in South Africa: A multilevel logistic analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 51-74.
    31. Ó Broin, Eoin & Nässén, Jonas & Johnsson, Filip, 2015. "Energy efficiency policies for space heating in EU countries: A panel data analysis for the period 1990–2010," Applied Energy, Elsevier, vol. 150(C), pages 211-223.
    32. Zhaohua Wang & Bin Zhang & Yixiang Zhang, 2011. "Determinants of public acceptance of tiered electricity price reform in China: Evidence from four urban cities," CEEP-BIT Working Papers 14, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    33. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.
    34. Karim Khan & Anwar Shah & Jaffar Khan, 2016. "Electricity Consumption Patterns: Comparative Evidence from Pakistan’s Public and Private Sectors," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 21(1), pages 99-122, Jan-June.
    35. Muhammad Rizwan Ali & Muhammad Shafiq & Murad Andejany, 2021. "Determinants of Consumers’ Intentions towards the Purchase of Energy Efficient Appliances in Pakistan: An Extended Model of the Theory of Planned Behavior," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    36. Kwakwa, Paul Adjei, 2014. "Energy-growth nexus and energy demand in Ghana: A review of empirical studies," MPRA Paper 54971, University Library of Munich, Germany, revised 01 Apr 2014.
    37. Cristina Cattaneo, 2018. "Internal and External Barriers to Energy Efficiency: Made-to-Measure Policy Interventions," Working Papers 2018.08, Fondazione Eni Enrico Mattei.
    38. Francesco Pasimeni & Tommaso Ciarli, 2018. "Diffusion of Shared Goods in Consumer Coalitions. An Agent-Based Model," SPRU Working Paper Series 2018-24, SPRU - Science Policy Research Unit, University of Sussex Business School.
    39. Broberg, Thomas & Persson, Lars, 2016. "Is our everyday comfort for sale? Preferences for demand management on the electricity market," Energy Economics, Elsevier, vol. 54(C), pages 24-32.
    40. Edwin Chukwuemeka Idoko & Chukwunonso Oraedu & Christian Chidera Ugwuanyi & Stephen Ikechukwu Ukenna, 2021. "Determinants of Smart Meter on Sustainable Energy Consumption Behavior: A Developing Country Perspective," SAGE Open, , vol. 11(3), pages 21582440211, July.
    41. Xavier Labandeira & Ana Ramos, 2012. "Household Environmental Attitudes and Energy Efficiency in Buildings: Evidence from Spanish Data," Working Papers fa08-2012, Economics for Energy.
    42. Nieves García-de-Frutos & José Manuel Ortega-Egea & Javier Martínez-del-Río, 2018. "Anti-consumption for Environmental Sustainability: Conceptualization, Review, and Multilevel Research Directions," Journal of Business Ethics, Springer, vol. 148(2), pages 411-435, March.
    43. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    44. Mahapatra, Krushna & Nair, Gireesh & Gustavsson, Leif, 2011. "Swedish energy advisers' perceptions regarding and suggestions for fulfilling homeowner expectations," Energy Policy, Elsevier, vol. 39(7), pages 4264-4273, July.
    45. Achtnicht, Martin, 2011. "Do environmental benefits matter? Evidence from a choice experiment among house owners in Germany," Ecological Economics, Elsevier, vol. 70(11), pages 2191-2200, September.
    46. Shujie Zhao & Qingbin Song & Chao Wang, 2019. "Characterizing the Energy-Saving Behaviors, Attitudes and Awareness of University Students in Macau," Sustainability, MDPI, vol. 11(22), pages 1-11, November.
    47. Mizobuchi, Kenichi & Takeuchi, Kenji, 2013. "The influences of financial and non-financial factors on energy-saving behaviour: A field experiment in Japan," Energy Policy, Elsevier, vol. 63(C), pages 775-787.
    48. Bradford Mills & Joachim Schleich, 2012. "Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries," Post-Print hal-00805711, HAL.
    49. Anna Claudelin & Ville Uusitalo & Sanna Pekkola & Maija Leino & Suvi Konsti-Laakso, 2017. "The Role of Consumers in the Transition toward Low-Carbon Living," Sustainability, MDPI, vol. 9(6), pages 1-15, June.
    50. Zou, Baoling & Mishra, Ashok K., 2020. "Appliance usage and choice of energy-efficient appliances: Evidence from rural Chinese households," Energy Policy, Elsevier, vol. 146(C).
    51. Innocent, Morgane & Francois-Lecompte, Agnes & Roudaut, Nolwenn, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Technological Forecasting and Social Change, Elsevier, vol. 150(C).
    52. Kenichi Mizobuchi & Kenji Takeuchi, 2012. "Using Economic Incentives to Reduce Electricity Consumption: A field Experiment in Matsuyama, Japan," International Journal of Energy Economics and Policy, Econjournals, vol. 2(4), pages 318-332.
    53. Cheng-Chih Chou & Liang-Rui Chen, 2021. "An Analysis of Behavioral Models Relating to Renewable Energy in Taiwan," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    54. Nie, Hongguang & Zhou, Ting & Lu, Haiyan & Huang, Shupeng, 2021. "Evaluation of the efficiency of Chinese energy-saving household appliance subsidy policy: An economic benefit perspective," Energy Policy, Elsevier, vol. 149(C).
    55. Hårsman, Björn & Wahlström, Marie H., 2014. "Residential energy consumption and conservation," Working Paper Series in Economics and Institutions of Innovation 388, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    56. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.
    57. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    58. Hori, Shiro & Kondo, Kayoko & Nogata, Daisuke & Ben, Han, 2013. "The determinants of household energy-saving behavior: Survey and comparison in five major Asian cities," Energy Policy, Elsevier, vol. 52(C), pages 354-362.
    59. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    60. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    61. Vivian W. Y. Tam & Laura Almeida & Khoa Le, 2018. "Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    62. Wang, Zhaohua & Sun, Yefei & Wang, Bo, 2020. "Policy cognition is more effective than step tariff in promoting electricity saving behaviour of residents," Energy Policy, Elsevier, vol. 139(C).
    63. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
    64. Lee, Lung-Sheng & Lee, Yi-Fang & Wu, Ming-Jiuan & Pan, Ying-Ju, 2019. "A study of energy literacy among nursing students to examine implications on energy conservation efforts in Taiwan," Energy Policy, Elsevier, vol. 135(C).
    65. Kenichi Mizobuchi & Kenji Takeuchi, 2012. "The Influences of Economic and Psychological Factors on Energy-Saving Behavior: A Field Experiment in Matsuyama, Japan," Discussion Papers 1206, Graduate School of Economics, Kobe University.
    66. Li Yan & Xiao Dou, 2022. "Building a Low-Carbon Community: Influencing Factors of Residents’ Idle Resource-Sharing Behaviors," Sustainability, MDPI, vol. 14(23), pages 1-18, December.
    67. Quaglione, Davide & Cassetta, Ernesto & Crociata, Alessandro & Sarra, Alessandro, 2017. "Exploring additional determinants of energy-saving behaviour: The influence of individuals' participation in cultural activities," Energy Policy, Elsevier, vol. 108(C), pages 503-511.
    68. Mutl, Jan & Seyler, Nicolas, 2019. "Going Beyond Buildings: Mindfulness and Real Estate User Behavior," MPRA Paper 107062, University Library of Munich, Germany.
    69. Janez Dolšak & Nevenka Hrovatin & Jelena Zorić, 2020. "Analysing Consumer Preferences, Characteristics, and Behaviour to Identify Energy-Efficient Consumers," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    70. Gyamfi, Samuel & Krumdieck, Susan, 2011. "Price, environment and security: Exploring multi-modal motivation in voluntary residential peak demand response," Energy Policy, Elsevier, vol. 39(5), pages 2993-3004, May.
    71. Salina Daud & Wan Noordiana Wan Hanafi & Bamidele Victor Ayodele & Jegatheesan Rajadurai & Siti Indati Mustapa & Nurul Nadiah Ahmad & Wan Mohammad Taufik Wan Abdullah & Siti Norhidayah Toolib & Maryam, 2023. "Residential Consumers’ Lifestyle Energy Usage and Energy Efficiency in Selected States in Malaysia," Energies, MDPI, vol. 16(8), pages 1-18, April.
    72. Rui Liu & Qiushuang Li & Yingqi Zhao, 2017. "Analysis of Existing Problems and Improvement Schemes for Substituting Electricity for Scattered Coal in China," Sustainability, MDPI, vol. 9(5), pages 1-21, May.
    73. Rita Abdel Sater, 2021. "Essays on the application of behavioural insights to environmental policy [Essais sur l’application des connaissances comportementales aux politiques environnementales]," SciencePo Working papers Main tel-03450909, HAL.
    74. Jaime Torres, Mónica Marcela & Carlsson, Fredrik, 2016. "Social Norms and Information Diffusion in Water-saving Programs: Evidence from a Randomized Field Experiment in Colombia," Working Papers in Economics 652, University of Gothenburg, Department of Economics.
    75. Fiorillo, Damiano & Sapio, Alessandro, 2019. "Energy saving in Italy in the late 1990s: Which role for non-monetary motivations?," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    76. McMichael, Megan & Shipworth, David, 2013. "The value of social networks in the diffusion of energy-efficiency innovations in UK households," Energy Policy, Elsevier, vol. 53(C), pages 159-168.
    77. Feser, Daniel & Bizer, Kilian & Rudolph-Cleff, Annette & Schulze, Joachim, 2016. "Energy audits in a private firm environment: Energy efficiency consultants' cost calculation for innovative technologies in the housing sector," University of Göttingen Working Papers in Economics 275, University of Goettingen, Department of Economics.
    78. Zhaohua Wang & Bin Zhang & Jianhua Yin & Yixiang Zhang, 2010. "Determinants and policy implications for household electricity-saving behaviour: Evidence from Beijing China," CEEP-BIT Working Papers 13, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    79. Wang, Bo & Wang, Xiaomeng & Guo, Dongxue & Zhang, Bin & Wang, Zhaohua, 2018. "Analysis of factors influencing residents’ habitual energy-saving behaviour based on NAM and TPB models: Egoism or altruism?," Energy Policy, Elsevier, vol. 116(C), pages 68-77.
    80. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    81. Xin, Yongrong & Long, Dengjie, 2023. "Linking eco-label knowledge and sustainable consumption of renewable energy: A roadmap towards green revolution," Renewable Energy, Elsevier, vol. 207(C), pages 531-538.
    82. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    83. Düştegör, Dilek & Sultana, Nahid & Felemban, Noor & Al Qahtani, Deemah, 2018. "A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications," Utilities Policy, Elsevier, vol. 50(C), pages 26-39.
    84. Vladimir Udalov & Jens Perret & Veronique Vasseur, 2017. "Environmental motivations behind individuals’ energy efficiency investments and daily energy-saving behaviour: evidence from Germany, the Netherlands and Belgium," International Economics and Economic Policy, Springer, vol. 14(3), pages 481-499, July.
    85. Saqib Ali & Habib Ullah & Minhas Akbar & Waheed Akhtar & Hasan Zahid, 2019. "Determinants of Consumer Intentions to Purchase Energy-Saving Household Products in Pakistan," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    86. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy demand management and social norms – the case study in Poland," Working Papers 2020-25, Faculty of Economic Sciences, University of Warsaw.
    87. Yue, Ting & Long, Ruyin & Chen, Hong, 2013. "Factors influencing energy-saving behavior of urban households in Jiangsu Province," Energy Policy, Elsevier, vol. 62(C), pages 665-675.
    88. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    89. Broberg, Thomas & Kazukauskas, Andrius, 2014. "Inefficiencies in residential use of energy - A critical overview of literature and energy efficiency policies in EU and Sweden," CERE Working Papers 2014:7, CERE - the Center for Environmental and Resource Economics.
    90. Young, William & Middlemiss, Lucie, 2012. "A rethink of how policy and social science approach changing individuals' actions on greenhouse gas emissions," Energy Policy, Elsevier, vol. 41(C), pages 742-747.
    91. Yan Liu & Rong Liu & Xin Jiang, 2019. "What drives low-carbon consumption behavior of Chinese college students? The regulation of situational factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(1), pages 173-191, January.
    92. Zhang, Yixiang & Wang, Zhaohua & Zhou, Guanghui, 2013. "Determinants and implications of employee electricity saving habit: An empirical study in China," Applied Energy, Elsevier, vol. 112(C), pages 1529-1535.
    93. Salla Annala & Satu Viljainen & Merja Pakkanen & Kristiina Hukki, 2016. "Consumer preferences in engaging in a sustainable lifestyle," International Journal of Innovation and Sustainable Development, Inderscience Enterprises Ltd, vol. 10(1), pages 1-18.
    94. Ruokamo, Enni & Kopsakangas-Savolainen, Maria & Meriläinen, Teemu & Svento, Rauli, 2019. "Towards flexible energy demand – Preferences for dynamic contracts, services and emissions reductions," Energy Economics, Elsevier, vol. 84(C).
    95. Tampakis, Stilianos & Arabatzis, Garyfallos & Tsantopoulos, Georgios & Rerras, Ioannis, 2017. "Citizens’ views on electricity use, savings and production from renewable energy sources: A case study from a Greek island," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 39-49.
    96. Véronique Vasseur & Anne-Francoise Marique, 2019. "Households’ Willingness to Adopt Technological and Behavioral Energy Savings Measures: An Empirical Study in The Netherlands," Energies, MDPI, vol. 12(22), pages 1-25, November.
    97. Aman, M.M. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A., 2013. "Analysis of the performance of domestic lighting lamps," Energy Policy, Elsevier, vol. 52(C), pages 482-500.
    98. Neves, Catarina & Oliveira, Tiago, 2021. "Drivers of consumers’ change to an energy-efficient heating appliance (EEHA) in households: Evidence from five European countries," Applied Energy, Elsevier, vol. 298(C).
    99. Waris, Idrees & Hameed, Irfan, 2019. "Using Extended Model of Theory of Planned Behavior to Predict Purchase Intention of Energy Efficient Home Appliances in Pakistan," MPRA Paper 109612, University Library of Munich, Germany.
    100. Kiran Krishnamurthy, Chandra & Kriström, Bengt, 2013. "Determinants of the price-premium for Green Energy: Evidence from an OECD cross-section," CERE Working Papers 2013:7, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    101. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    102. Hussain, Shahid & Seet, Pi-Shen & Ryan, Maria & Iranmanesh, Mohammad & Cripps, Helen & Salam, Abdul, 2022. "Determinants of switching intention in the electricity markets - An integrated structural model approach," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    103. Martinsson, Johan & Lundqvist, Lennart J. & Sundström, Aksel, 2011. "Energy saving in Swedish households. The (relative) importance of environmental attitudes," Energy Policy, Elsevier, vol. 39(9), pages 5182-5191, September.
    104. Yu, Yihua & Guo, Jin, 2016. "Identifying electricity-saving potential in rural China: Empirical evidence from a household survey," Energy Policy, Elsevier, vol. 94(C), pages 1-9.
    105. Bernadeta Gołębiowska & Anna Bartczak & Wiktor Budziński, 2019. "Impact of social comparison on DSM in Poland," Working Papers 2019-10, Faculty of Economic Sciences, University of Warsaw.
    106. Shucai Bai & Fangyi Li & Wu Xie, 2022. "Green but Unpopular? Analysis on Purchase Intention of Heat Pump Water Heaters in China," Energies, MDPI, vol. 15(7), pages 1-19, March.
    107. Chandra Kiran B. Krishnamurthy & Bengt Kriström, 2016. "Determinants of the Price-Premium for Green Energy: Evidence from an OECD Cross-Section," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 173-204, June.

  51. Michanek, Gabriel & Söderholm, Patrik, 2009. "Licensing of nuclear power plants: The case of Sweden in an international comparison," Energy Policy, Elsevier, vol. 37(10), pages 4086-4097, October.

    Cited by:

    1. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    2. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
    3. Millot, Ariane & Krook-Riekkola, Anna & Maïzi, Nadia, 2020. "Guiding the future energy transition to net-zero emissions: Lessons from exploring the differences between France and Sweden," Energy Policy, Elsevier, vol. 139(C).
    4. Ramana, M.V. & Hopkins, Laura Berzak & Glaser, Alexander, 2013. "Licensing small modular reactors," Energy, Elsevier, vol. 61(C), pages 555-564.

  52. Blomberg, Jerry & Söderholm, Patrik, 2009. "The economics of secondary aluminium supply: An econometric analysis based on European data," Resources, Conservation & Recycling, Elsevier, vol. 53(8), pages 455-463.

    Cited by:

    1. Dace, Elina & Bazbauers, Gatis & Berzina, Alise & Davidsen, Pål I., 2014. "System dynamics model for analyzing effects of eco-design policy on packaging waste management system," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 175-190.
    2. Agliardi, Elettra & Kasioumi, Myrto, 2023. "Closing the loop in a duopolistic circular economy model," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Angus, A. & Casado, M. Rivas & Fitzsimons, D., 2012. "Exploring the usefulness of a simple linear regression model for understanding price movements of selected recycled materials in the UK," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 10-19.
    4. Bocar Samba Ba & Raphael Soubeyran, 2023. "Hotelling and Recycling," Post-Print hal-04015636, HAL.
    5. Zhang, Zhouyi & Song, Yi & Cheng, Jinhua & Zhang, Yijun, 2023. "Effects of heterogeneous ICT on critical metal supply: A differentiated perspective on primary and secondary supply," Resources Policy, Elsevier, vol. 83(C).
    6. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    7. Söderholm, Patrik, 2011. "Taxing virgin natural resources: Lessons from aggregates taxation in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 911-922.
    8. Roberto Ercoli & Andrea Orlando & Daniele Borrini & Franco Tassi & Gabriele Bicocchi & Alberto Renzulli, 2021. "Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    9. Sevigné-Itoiz, Eva & Gasol, Carles M. & Rieradevall, Joan & Gabarrell, Xavier, 2014. "Environmental consequences of recycling aluminum old scrap in a global market," Resources, Conservation & Recycling, Elsevier, vol. 89(C), pages 94-103.

  53. Hage, Olle & Söderholm, Patrik & Berglund, Christer, 2009. "Norms and economic motivation in household recycling: Empirical evidence from Sweden," Resources, Conservation & Recycling, Elsevier, vol. 53(3), pages 155-165.

    Cited by:

    1. Dace, Elina & Bazbauers, Gatis & Berzina, Alise & Davidsen, Pål I., 2014. "System dynamics model for analyzing effects of eco-design policy on packaging waste management system," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 175-190.
    2. Agliardi, Elettra & Kasioumi, Myrto, 2023. "Closing the loop in a duopolistic circular economy model," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Inga-Lill Söderberg & Misse Wester & Agnieszka Zalejska Jonsson, 2022. "Exploring Factors Promoting Recycling Behavior in Student Housing," Sustainability, MDPI, vol. 14(7), pages 1-16, April.
    4. Wang, Xiaonan & Tzeng, Shian-Yang & Mardani, Abbas, 2022. "Spatial differentiation and driving mechanisms of urban household waste separation behavior in Shanghai, China," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    5. Pfister, Naomi & Mathys, Nicole A., 2022. "Waste taxes at work: Evidence from the canton of Vaud in Switzerland," Ecological Economics, Elsevier, vol. 193(C).
    6. Dorothea Christina Schoeman & Isaac Tebogo Rampedi, 2022. "Drivers of Household Recycling Behavior in the City of Johannesburg, South Africa," IJERPH, MDPI, vol. 19(10), pages 1-20, May.
    7. Keramitsoglou, Kiriaki M. & Tsagarakis, Konstantinos P., 2013. "Public participation in designing a recycling scheme towards maximum public acceptance," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 55-67.
    8. Sidique, Shaufique F. & Joshi, Satish V. & Lupi, Frank, 2010. "Factors influencing the rate of recycling: An analysis of Minnesota counties," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 242-249.
    9. Wallin, Are & Zannakis, Mathias & Johansson, Lars-Olof & Molander, Sverker, 2013. "Influence of interventions and internal motivation on Swedish homeowners’ change of on-site sewage systems," Resources, Conservation & Recycling, Elsevier, vol. 76(C), pages 27-40.
    10. Tingting Liu & Zichen Zheng & Zhichao Wen & Shangyun Wu & Yaru Liu & Jing Cao & Zhixiong Weng, 2022. "Factors Influencing Residents’ Behavior in Internet Recycling: From the Perspective of the Adoption of New Technology," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    11. Michal Struk, 2015. "Distance and Incentives Matter: The Separation of Recyclable Municipal Waste," MUNI ECON Working Papers 18, Masaryk University, revised Jul 2016.
    12. Vikas Chauhan & Rambalak Yadav & Vipin Choudhary, 2022. "Adoption of electronic banking services in India: an extension of UTAUT2 model," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 27(1), pages 27-40, March.
    13. López-Mosquera, Natalia & Lera-López, Fernando & Sánchez, Mercedes, 2015. "Key factors to explain recycling, car use and environmentally responsible purchase behaviors: A comparative perspective," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 29-39.
    14. Jones, N. & Evangelinos, K. & Halvadakis, C.P. & Iosifides, T. & Sophoulis, C.M., 2010. "Social factors influencing perceptions and willingness to pay for a market-based policy aiming on solid waste management," Resources, Conservation & Recycling, Elsevier, vol. 54(9), pages 533-540.
    15. Han, Gül S. Akçay & Bektaş, Nihal & Öncel, M. Salim, 2010. "Separate collection practice of packaging waste as an example of Küçükçekmece, Istanbul, Turkey," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1317-1321.
    16. Yalin Yuan & Minyue Xu & Hanxin Chen, 2022. "What Factors Affect Farmers’ Levels of Domestic Waste Sorting Behavior? A Case Study from Shaanxi Province, China," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    17. Saphores, Jean-Daniel M. & Ogunseitan, Oladele A. & Shapiro, Andrew A., 2012. "Willingness to engage in a pro-environmental behavior: An analysis of e-waste recycling based on a national survey of U.S. households," Resources, Conservation & Recycling, Elsevier, vol. 60(C), pages 49-63.
    18. Botetzagias, Iosif & Dima, Antora-Fani & Malesios, Chrisovalantis, 2015. "Extending the Theory of Planned Behavior in the context of recycling: The role of moral norms and of demographic predictors," MPRA Paper 99294, University Library of Munich, Germany.
    19. Fielding, Kelly S. & van Kasteren, Yasmin & Louis, Winnifred & McKenna, Bernard & Russell, Sally & Spinks, Anneliese, 2016. "Using individual householder survey responses to predict household environmental outcomes: The cases of recycling and water conservation," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 90-97.
    20. Chuanhui Liao & Hui Li, 2019. "Environmental Education, Knowledge, and High School Students’ Intention toward Separation of Solid Waste on Campus," IJERPH, MDPI, vol. 16(9), pages 1-15, May.
    21. Martinho, Graça & Pires, Ana & Portela, Gonçalo & Fonseca, Miguel, 2015. "Factors affecting consumers’ choices concerning sustainable packaging during product purchase and recycling," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 58-68.
    22. Maria Zunally Rapada & Derrick Ethelbhert Yu & Krista Danielle Yu, 2021. "Do Social Media Posts Influence Consumption Behavior towards Plastic Pollution?," Sustainability, MDPI, vol. 13(22), pages 1-18, November.
    23. Miliute-Plepiene, Jurate & Hage, Olle & Plepys, Andrius & Reipas, Algirdas, 2016. "What motivates households recycling behaviour in recycling schemes of different maturity? Lessons from Lithuania and Sweden," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 40-52.
    24. Arbués, Fernando & Villanúa, Inmaculada, 2016. "Determinants of behavior toward selective collection of batteries in Spain. A bivariate probit model," Resources, Conservation & Recycling, Elsevier, vol. 106(C), pages 1-8.
    25. Caroline M. Y. Law & Ernest K. S. Lee & K. L. Au, 2022. "Hong Kong Citizens’ Socio-Demographic Dynamics of Urban Yard Waste Facilities Siting and Legislation Preferences," Sustainability, MDPI, vol. 14(11), pages 1-13, May.
    26. Dhokhikah, Yeny & Trihadiningrum, Yulinah & Sunaryo, Sony, 2015. "Community participation in household solid waste reduction in Surabaya, Indonesia," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 153-162.

  54. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.

    Cited by:

    1. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    2. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    3. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.
    4. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 178-184.
    5. Mignon, Ingrid & Bergek, Anna, 2016. "Investments in renewable electricity production: The importance of policy revisited," Renewable Energy, Elsevier, vol. 88(C), pages 307-316.
    6. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    7. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Bass, Robert J. & Malalasekera, Weeratunge & Willmot, Peter & Versteeg, Henk K., 2011. "The impact of variable demand upon the performance of a combined cycle gas turbine (CCGT) power plant," Energy, Elsevier, vol. 36(4), pages 1956-1965.
    9. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    10. Elshkaki, Ayman & Graedel, T.E., 2014. "Dysprosium, the balance problem, and wind power technology," Applied Energy, Elsevier, vol. 136(C), pages 548-559.
    11. Uba, Katrin, 2010. "Who formulates renewable-energy policy? A Swedish example," Energy Policy, Elsevier, vol. 38(11), pages 6674-6683, November.
    12. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    13. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    14. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    15. Zhao, Zhen-yu & Sun, Guang-zheng & Zuo, Jian & Zillante, George, 2013. "The impact of international forces on the Chinese wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 131-141.

  55. Söderholm, Patrik, 2008. "Harmonization of renewable electricity feed-in laws: A comment," Energy Policy, Elsevier, vol. 36(3), pages 946-953, March.

    Cited by:

    1. Dinica, Valentina, 2008. "Initiating a sustained diffusion of wind power: The role of public-private partnerships in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3562-3571, September.
    2. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2014. "Towards a general "Europeanization" of EU Member States' energy policies?," UFZ Discussion Papers 17/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Söderholm, Patrik, 2008. "The political economy of international green certificate markets," Energy Policy, Elsevier, vol. 36(6), pages 2051-2062, June.
    4. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Friebe, Christian A. & von Flotow, Paschen & Täube, Florian A., 2014. "Exploring technology diffusion in emerging markets – the role of public policy for wind energy," Energy Policy, Elsevier, vol. 70(C), pages 217-226.
    6. Bono, Filippa & Giacomarra, Marcella, 2016. "The photovoltaic growth in the European Union requires stronger RES support," Journal of Policy Modeling, Elsevier, vol. 38(2), pages 324-339.
    7. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    8. Fürsch, Michaela & Lindenberger, Dietmar, 2013. "Promotion of Electricity from Renewable Energy in Europe post 2020 - the Economic Benefits of Cooperation," EWI Working Papers 2013-16, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    9. Ciarreta, Aitor & Gutiérrez-Hita, Carlos & Nasirov, Shahriyar, 2011. "Renewable energy sources in the Spanish electricity market: Instruments and effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2510-2519, June.

  56. Söderholm, Patrik, 2008. "The political economy of international green certificate markets," Energy Policy, Elsevier, vol. 36(6), pages 2051-2062, June.

    Cited by:

    1. Madlener, Reinhard & Neustadt, Ilja, 2010. "Renewable Energy Policy in the Presence of Innovation: Does Government Pre-Commitment Matter?," FCN Working Papers 4/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jun 2010.
    2. Raadal, Hanne Lerche & Dotzauer, Erik & Hanssen, Ole Jørgen & Kildal, Hans Petter, 2012. "The interaction between Electricity Disclosure and Tradable Green Certificates," Energy Policy, Elsevier, vol. 42(C), pages 419-428.
    3. Söderholm, Patrik & Pettersson, Fredrik, 2008. "Climate policy and the social cost of power generation: Impacts of the Swedish national emissions target," Energy Policy, Elsevier, vol. 36(11), pages 4154-4158, November.
    4. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    5. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    6. Fridolfsson, Sven-Olof & Tangerås, Thomas P., 2013. "A reexamination of renewable electricity policy in Sweden," Energy Policy, Elsevier, vol. 58(C), pages 57-63.
    7. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    8. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.
    9. Heshmati, Almas, 2014. "An Empirical Survey of the Ramifications of a Green Economy," IZA Discussion Papers 8078, Institute of Labor Economics (IZA).
    10. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    11. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    12. Thomas P. Tangerås, 2015. "Renewable Electricity Policy and Market Integration," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    14. Söderholm, Patrik, 2008. "Harmonization of renewable electricity feed-in laws: A comment," Energy Policy, Elsevier, vol. 36(3), pages 946-953, March.
    15. Stoppato, Anna, 2012. "Energetic and economic investigation of the operation management of an Organic Rankine Cycle cogeneration plant," Energy, Elsevier, vol. 41(1), pages 3-9.
    16. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.
    17. Foidart, F. & Oliver-Solá, J. & Gasol, C.M. & Gabarrell, X. & Rieradevall, J., 2010. "How important are current energy mix choices on future sustainability? Case study: Belgium and Spain--projections towards 2020-2030," Energy Policy, Elsevier, vol. 38(9), pages 5028-5037, September.

  57. Ek, Kristina & Söderholm, Patrik, 2008. "Norms and economic motivation in the Swedish green electricity market," Ecological Economics, Elsevier, vol. 68(1-2), pages 169-182, December.

    Cited by:

    1. Matsiori, Steriani K., 2020. "Application of the New Environmental Paradigm to Greece: A critical case study," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 335-344.
    2. Kundu, Nobinkhor, 2014. "Sustainable energy for Development: Access to finance on renewable energy and energy efficiency technologies for Bangladesh," MPRA Paper 65154, University Library of Munich, Germany, revised 20 Jun 2014.
    3. Brécard, Dorothée, 2014. "Consumer confusion over the profusion of eco-labels: Lessons from a double differentiation model," Resource and Energy Economics, Elsevier, vol. 37(C), pages 64-84.
    4. Ndebele, Tom & Marsh, Dan & Scarpa, Riccardo, 2019. "Consumer switching in retail electricity markets: Is price all that matters?," Energy Economics, Elsevier, vol. 83(C), pages 88-103.
    5. Raadal, Hanne Lerche & Dotzauer, Erik & Hanssen, Ole Jørgen & Kildal, Hans Petter, 2012. "The interaction between Electricity Disclosure and Tradable Green Certificates," Energy Policy, Elsevier, vol. 42(C), pages 419-428.
    6. Strazzera, Elisabetta & Mura, Marina & Contu, Davide, 2012. "Combining choice experiments with psychometric scales to assess the social acceptability of wind energy projects: A latent class approach," Energy Policy, Elsevier, vol. 48(C), pages 334-347.
    7. Ito, Nobuyuki & Takeuchi, Kenji & Tsuge, Takahiro & Kishimoto, Atsuo, 2010. "Applying threshold models to donations to a green electricity fund," Energy Policy, Elsevier, vol. 38(4), pages 1819-1825, April.
    8. Ma, Chunbo & Burton, Michael, 2016. "Warm glow from green power: Evidence from Australian electricity consumers," Journal of Environmental Economics and Management, Elsevier, vol. 78(C), pages 106-120.
    9. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    10. Dagher, Leila & Bird, Lori & Heeter, Jenny, 2016. "Residential Green Power Demand in the United States," MPRA Paper 116087, University Library of Munich, Germany.
    11. Tang, Chor Foon & Abosedra, Salah & Naghavi, Navaz, 2021. "Does the quality of institutions and education strengthen the quality of the environment? Evidence from a global perspective," Energy, Elsevier, vol. 218(C).
    12. Mah, Daphne Ngar-yin & van der Vleuten, Johannes Marinus & Hills, Peter & Tao, Julia, 2012. "Consumer perceptions of smart grid development: Results of a Hong Kong survey and policy implications," Energy Policy, Elsevier, vol. 49(C), pages 204-216.
    13. Jia, Jun–Jun & Wu, Hua-Qing & Nie, Hong-Guang & Fan, Ying, 2019. "Modeling the willingness to pay for energy efficient residence in urban residential sector in China," Energy Policy, Elsevier, vol. 135(C).
    14. Martin Binder & Ann-Kathrin Blankenberg & Heinz Welsch, 2020. "Pro-environmental Norms, Green Lifestyles, and Subjective Well-Being: Panel Evidence from the UK," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(3), pages 1029-1060, December.
    15. Benjamin Ho & John Taber & Gregory Poe & Antonio Bento, 2016. "The Effects of Moral Licensing and Moral Cleansing in Contingent Valuation and Laboratory Experiments on the Demand to Reduce Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 317-340, June.
    16. Lucas, Sterenn & Salladarré, Frédéric & Brécard, Dorothée, 2018. "Green consumption and peer effects: Does it work for seafood products?," Food Policy, Elsevier, vol. 76(C), pages 44-55.
    17. Sopha, Bertha Maya & Klöckner, Christian A., 2011. "Psychological factors in the diffusion of sustainable technology: A study of Norwegian households' adoption of wood pellet heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2756-2765, August.
    18. Hanimann, Raphael & Vinterbäck, Johan & Mark-Herbert, Cecilia, 2015. "Consumer behavior in renewable electricity: Can branding in accordance with identity signaling increase demand for renewable electricity and strengthen supplier brands?," Energy Policy, Elsevier, vol. 78(C), pages 11-21.
    19. Zheng, Xuemei & Li, Cao & Fang, Xingming & Zhang, Ning, 2021. "Price sensitivity and consumers’ support for renewable energy in China," Energy, Elsevier, vol. 222(C).
    20. Emily Schulte & Fabian Scheller & Daniel Sloot & Thomas Bruckner, 2021. "A meta-analysis of residential PV adoption: the important role of perceived benefits, intentions and antecedents in solar energy acceptance," Papers 2112.12464, arXiv.org.
    21. Ohler, Adrienne M. & Billger, Sherrilyn M., 2014. "Does environmental concern change the tragedy of the commons? Factors affecting energy saving behaviors and electricity usage," Ecological Economics, Elsevier, vol. 107(C), pages 1-12.
    22. Bauwens, Thomas & Eyre, Nick, 2017. "Exploring the links between community-based governance and sustainable energy use: Quantitative evidence from Flanders," Ecological Economics, Elsevier, vol. 137(C), pages 163-172.
    23. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Analytical comparison between electricity consumption and behavioral characteristics of Swedish households in rented apartments," Applied Energy, Elsevier, vol. 90(1), pages 182-188.
    24. Tabi, Andrea & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2014. "What makes people seal the green power deal? — Customer segmentation based on choice experiment in Germany," Ecological Economics, Elsevier, vol. 107(C), pages 206-215.
    25. A. Mantovani & O. Tarola & C. Vergari, 2015. "Hedonic Quality and Social Norms: a hybrid model of product differentiation," Working Papers wp1029, Dipartimento Scienze Economiche, Universita' di Bologna.
    26. Vesely, Stepan & Klöckner, Christian A. & Carrus, Giuseppe & Chokrai, Parissa & Fritsche, Immo & Masson, Torsten & Panno, Angelo & Tiberio, Lorenza & Udall, Alina M., 2022. "Donations to renewable energy projects: The role of social norms and donor anonymity," Ecological Economics, Elsevier, vol. 193(C).
    27. Litvine, Dorian & Wüstenhagen, Rolf, 2011. "Helping "light green" consumers walk the talk: Results of a behavioural intervention survey in the Swiss electricity market," Ecological Economics, Elsevier, vol. 70(3), pages 462-474, January.
    28. Toshi H. Arimura & Hajime Katayama & Mari Sakudo, 2016. "Do Social Norms Matter to Energy-Saving Behavior? Endogenous Social and Correlated Effects," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 525-553.
    29. Martin Binder & Ann-Kathrin Blankenberg & Heinz Welsch, 2019. "Pro-environmental norms and subjective well-being: panel evidence from the UK," Working Papers V-417-19, University of Oldenburg, Department of Economics, revised Jan 2019.
    30. Müller, Stephan & von Wangenheim, Georg, 2014. "The impact of market innovations on the evolution of norms: the sustainability case," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100535, Verein für Socialpolitik / German Economic Association.
    31. Iosifidi, Maria, 2016. "Environmental awareness, consumption, and labor supply: Empirical evidence from household survey data," Ecological Economics, Elsevier, vol. 129(C), pages 1-11.
    32. Charu Grover & Sangeeta Bansal & Adan L. Martinez-Cruz, "undated". "Influence of Social Network Effect and Incentive on Choice of Star Labeled Cars in India: A Latent Class Approach based on Choice Experiment," Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi Discussion Papers 18-05, Centre for International Trade and Development, Jawaharlal Nehru University, New Delhi, India.
    33. Zhang, Lei & Wu, Yang, 2012. "Market segmentation and willingness to pay for green electricity among urban residents in China: The case of Jiangsu Province," Energy Policy, Elsevier, vol. 51(C), pages 514-523.
    34. Meyer, Andrew, 2015. "Does education increase pro-environmental behavior? Evidence from Europe," Ecological Economics, Elsevier, vol. 116(C), pages 108-121.
    35. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    36. Andersson, Linda & Ek, Kristina & Kastensson, Åsa & Wårell, Linda, 2020. "Transition towards sustainable transportation – What determines fuel choice?," Transport Policy, Elsevier, vol. 90(C), pages 31-38.
    37. Adongo, Charles A. & Taale, Francis & Adam, Issahaku, 2018. "Tourists' values and empathic attitude toward sustainable development in tourism," Ecological Economics, Elsevier, vol. 150(C), pages 251-263.
    38. Mizobuchi, Kenichi & Takeuchi, Kenji, 2013. "The influences of financial and non-financial factors on energy-saving behaviour: A field experiment in Japan," Energy Policy, Elsevier, vol. 63(C), pages 775-787.
    39. van Kempen, Luuk & Muradian, Roldan & Sandóval, César & Castañeda, Juan-Pablo, 2009. "Too poor to be green consumers? A field experiment on revealed preferences for firewood in rural Guatemala," Ecological Economics, Elsevier, vol. 68(7), pages 2160-2167, May.
    40. Stephan Müller & Georg Wangenheim, 2017. "The impact of market innovations on the dissemination of social norms: the sustainability case," Journal of Evolutionary Economics, Springer, vol. 27(4), pages 663-690, September.
    41. Hage, Olle & Söderholm, Patrik & Berglund, Christer, 2009. "Norms and economic motivation in household recycling: Empirical evidence from Sweden," Resources, Conservation & Recycling, Elsevier, vol. 53(3), pages 155-165.
    42. PUDARUTH Sharmila & JUWAHEER Thanika Devi & KOODRUTH UmmeYusra, 2017. "Understanding The Ecological Adoption Of Solar Water Heaters Among Customers Of Island Economies," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 12(1), pages 148-173, April.
    43. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    44. Frédéric Salladarré & Dorothée Brécard & Sterenn Lucas & Pierrick Ollivier, 2016. "Are French consumers ready to pay a premium for eco-labeled seafood products? A contingent valuation estimation with heterogeneous anchoring," Agricultural Economics, International Association of Agricultural Economists, vol. 47(2), pages 247-258, March.
    45. Prudence Dato, 2017. "Investment in Energy Efficiency, Adoption of Renewable Energy and Household Behaviour: Evidence from OECD countries," Working Papers 2017.05, FAERE - French Association of Environmental and Resource Economists.
    46. Suzanne van Osch & Stephen Hynes & Shirra Freeman & Tim O’Higgins, 2019. "Estimating the Public’s Preferences for Sustainable Aquaculture: A Country Comparison," Sustainability, MDPI, vol. 11(3), pages 1-24, January.
    47. Donatella Baiardi, 2021. "What do you think about climate change?," Working Paper series 21-16, Rimini Centre for Economic Analysis.
    48. Nobuyuki Ito & Kenji Takeuchi & Takahiro Tsuge & Atsuo Kishimoto, 2012. "The Motivation behind Behavioral Thresholds: A Latent Class Approach," Economics Bulletin, AccessEcon, vol. 32(3), pages 1831-1847.
    49. Bashiri, Ali & Alizadeh, Sasan H., 2018. "The analysis of demographics, environmental and knowledge factors affecting prospective residential PV system adoption: A study in Tehran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3131-3139.
    50. Roland Olbrich & Martin F. Quaas & Stefan Baumgaertner, 2011. "Personal norms of sustainability and their impact on management – The case of rangeland management in semi-arid regions," Working Paper Series in Economics 209, University of Lüneburg, Institute of Economics.
    51. Kenichi Mizobuchi & Kenji Takeuchi, 2012. "The Influences of Economic and Psychological Factors on Energy-Saving Behavior: A Field Experiment in Matsuyama, Japan," Discussion Papers 1206, Graduate School of Economics, Kobe University.
    52. Spandagos, Constantine & Yarime, Masaru & Baark, Erik & Ng, Tze Ling, 2020. "“Triple Target” policy framework to influence household energy behavior: Satisfy, strengthen, include," Applied Energy, Elsevier, vol. 269(C).
    53. Gieri Hinnen & Stefanie Lena Hille & Andreas Wittmer, 2017. "Willingness to Pay for Green Products in Air Travel: Ready for Take‐Off?," Business Strategy and the Environment, Wiley Blackwell, vol. 26(2), pages 197-208, February.
    54. Donatella Baiardi, 2021. "What do you think about climate change?," Working Papers 477, University of Milano-Bicocca, Department of Economics, revised Aug 2021.
    55. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    56. Marc Le Menestrel & Luk N. Wassenhove, 2016. "Subjectively biased objective functions," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 73-83, June.
    57. Ma, Chunbo & Burton, Michael P., 2013. "A Nested Logit Model of Green Electricity Consumption in Western Australia," Working Papers 148411, University of Western Australia, School of Agricultural and Resource Economics.
    58. Simona Bigerna & Paolo Polinori, 2015. "Assessing the Determinants of Renewable Electricity Acceptance Integrating Meta-Analysis Regression and a Local Comprehensive Survey," Sustainability, MDPI, vol. 7(9), pages 1-24, August.
    59. Interis, Matthew G. & Haab, Timothy C., 2011. "Woodsy the optimal owl: Environmental campaigns, norms, and implications for public goods policy," Ecological Economics, Elsevier, vol. 70(12), pages 2327-2333.
    60. Anna Kowalska-Pyzalska, 2019. "Do Consumers Want to Pay for Green Electricity? A Case Study from Poland," Sustainability, MDPI, vol. 11(5), pages 1-20, March.
    61. Arabatzis, Garyfallos & Malesios, Chrisovalantis, 2013. "Pro-environmental attitudes of users and non-users of fuelwood in a rural area of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 621-630.
    62. Abida Begum & Liu Jingwei & Imran Ullah Khan Marwat & Salim Khan & Heesup Han & Antonio Ariza-Montes, 2021. "Evaluating the Impact of Environmental Education on Ecologically Friendly Behavior of University Students in Pakistan: The Roles of Environmental Responsibility and Islamic Values," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    63. Ankinée Kirakozian, 2015. "Household Waste Recycling: Economics and Policy," GREDEG Working Papers 2015-09, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France, revised Mar 2016.
    64. Roland Olbrich & Martin F. Quaas & Stefan Baumgärtner, 2014. "Personal Norms of Sustainability and Farm Management Behavior," Sustainability, MDPI, vol. 6(8), pages 1-28, August.
    65. Broberg, Thomas & Kazukauskas, Andrius, 2014. "Inefficiencies in residential use of energy - A critical overview of literature and energy efficiency policies in EU and Sweden," CERE Working Papers 2014:7, CERE - the Center for Environmental and Resource Economics.
    66. Gerlach, Heiko & Zheng, Xuemei, 2018. "Preferences for green electricity, investment and regulatory incentives," Energy Economics, Elsevier, vol. 69(C), pages 430-441.
    67. Powdthavee, Nattavudh, 2021. "Education and pro-environmental attitudes and behaviours: A nonparametric regression discontinuity analysis of a major schooling reform in England and Wales," Ecological Economics, Elsevier, vol. 181(C).
    68. Powdthavee, Nattavudh, 2020. "The Causal Effect of Education on Climate Literacy and Pro-Environmental Behaviours: Evidence from a Nationwide Natural Experiment," IZA Discussion Papers 13210, Institute of Labor Economics (IZA).
    69. Emily Schulte & Fabian Scheller & Wilmer Pasut & Thomas Bruckner, 2021. "Product traits, decision-makers, and household low-carbon technology adoptions: moving beyond single empirical studies," Papers 2112.11867, arXiv.org.
    70. Ndebele, Tom, 2020. "Assessing the potential for consumer-driven renewable energy development in deregulated electricity markets dominated by renewables," Energy Policy, Elsevier, vol. 136(C).
    71. Torsten J. Gerpott & Ilaha Mahmudova, 2010. "Determinants of price mark‐up tolerance for green electricity – lessons for environmental marketing strategies from a study of residential electricity customers in Germany," Business Strategy and the Environment, Wiley Blackwell, vol. 19(5), pages 304-318, July.
    72. Kiran Krishnamurthy, Chandra & Kriström, Bengt, 2013. "Determinants of the price-premium for Green Energy: Evidence from an OECD cross-section," CERE Working Papers 2013:7, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    73. Martinsson, Johan & Lundqvist, Lennart J. & Sundström, Aksel, 2011. "Energy saving in Swedish households. The (relative) importance of environmental attitudes," Energy Policy, Elsevier, vol. 39(9), pages 5182-5191, September.
    74. Rosa Maria Dangelico & Fabio Nonino & Alessandro Pompei, 2021. "Which are the determinants of green purchase behaviour? A study of Italian consumers," Business Strategy and the Environment, Wiley Blackwell, vol. 30(5), pages 2600-2620, July.
    75. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    76. Abida Begum & Liu Jingwei & Maqsood Haider & Muhammad Maroof Ajmal & Salim Khan & Heesup Han, 2021. "Impact of Environmental Moral Education on Pro-Environmental Behaviour: Do Psychological Empowerment and Islamic Religiosity Matter?," IJERPH, MDPI, vol. 18(4), pages 1-19, February.
    77. Brécard, Dorothée & Hlaimi, Boubaker & Lucas, Sterenn & Perraudeau, Yves & Salladarré, Frédéric, 2009. "Determinants of demand for green products: An application to eco-label demand for fish in Europe," Ecological Economics, Elsevier, vol. 69(1), pages 115-125, November.
    78. Andrea Mezger & Pablo Cabanelas & Mª. Jesús López‐Miguens & Francesca Cabiddu & Klaus Rüdiger, 2020. "Sustainable development and consumption: The role of trust for switching towards green energy," Business Strategy and the Environment, Wiley Blackwell, vol. 29(8), pages 3598-3610, December.
    79. Chandra Kiran B. Krishnamurthy & Bengt Kriström, 2016. "Determinants of the Price-Premium for Green Energy: Evidence from an OECD Cross-Section," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(2), pages 173-204, June.
    80. Shahbaz, Muhammad & Kablan, Sandrine & Hammoudeh, Shawkat & Nasir, Muhammad Ali & Kontoleon, Andreas, 2020. "Environmental Implications of Increased US Oil Production and Liberal Growth Agenda in Post -Paris Agreement Era," MPRA Paper 99277, University Library of Munich, Germany, revised 19 Mar 2020.
    81. Bjørnstad, Even, 2012. "Diffusion of renewable heating technologies in households. Experiences from the Norwegian Household Subsidy Programme," Energy Policy, Elsevier, vol. 48(C), pages 148-158.

  58. Söderholm, Patrik & Pettersson, Fredrik, 2008. "Climate policy and the social cost of power generation: Impacts of the Swedish national emissions target," Energy Policy, Elsevier, vol. 36(11), pages 4154-4158, November.

    Cited by:

    1. Hongjie Sun & Shuwen Niu & Xiqiang Wang, 2019. "Future Regional Contributions for Climate Change Mitigation: Insights from Energy Investment Gap and Policy Cost," Sustainability, MDPI, vol. 11(12), pages 1-17, June.
    2. Honma, Satoshi & Hu, Jin-Li, 2009. "Total-factor energy productivity growth of regions in Japan," Energy Policy, Elsevier, vol. 37(10), pages 3941-3950, October.
    3. Michanek, Gabriel & Söderholm, Patrik, 2009. "Licensing of nuclear power plants: The case of Sweden in an international comparison," Energy Policy, Elsevier, vol. 37(10), pages 4086-4097, October.
    4. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.
    5. Schaffrin, André & Reibling, Nadine, 2015. "Household energy and climate mitigation policies: Investigating energy practices in the housing sector," Energy Policy, Elsevier, vol. 77(C), pages 1-10.
    6. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.

  59. Ek, Kristina & Söderholm, Patrik, 2008. "Households' switching behavior between electricity suppliers in Sweden," Utilities Policy, Elsevier, vol. 16(4), pages 254-261, December.

    Cited by:

    1. Vesterberg, Mattias, 2017. "The effect of price on electricity contract choice," Umeå Economic Studies 941, Umeå University, Department of Economics.
    2. Xiaoping He & David Reiner, 2015. "Why Do More British Consumers Not Switch Energy Suppliers? The Role of Individual Attitudes," Cambridge Working Papers in Economics 1525, Faculty of Economics, University of Cambridge.
    3. Schleich, Joachim & Faure, Corinne & Gassmann, Xavier, 2017. "Household electricity contract and provider switching in the EU," Working Papers "Sustainability and Innovation" S14/2017, Fraunhofer Institute for Systems and Innovation Research (ISI).
    4. Vassileva, Iana & Odlare, Monica & Wallin, Fredrik & Dahlquist, Erik, 2012. "The impact of consumers’ feedback preferences on domestic electricity consumption," Applied Energy, Elsevier, vol. 93(C), pages 575-582.
    5. Littlechild, S., 2017. "The CMA’s Assessment of Customer Detriment in the GB Retail Energy Market," Cambridge Working Papers in Economics 1707, Faculty of Economics, University of Cambridge.
    6. Magdalena Six & Franz Wirl & Jaqueline Wolf, 2017. "Information as potential key determinant in switching electricity suppliers," Journal of Business Economics, Springer, vol. 87(2), pages 263-290, February.
    7. Nogata, Daisuke, 2022. "Determinants of household switching between natural gas suppliers: Evidence from Japan," Utilities Policy, Elsevier, vol. 76(C).
    8. Calzada, Joan & García-Mariñoso, Begoña & Suárez, David, 2023. "Do telecommunications prices depend on consumer engagement?," Information Economics and Policy, Elsevier, vol. 62(C).
    9. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    10. Carin Cruijsen & Maaike Diepstraten, 2017. "Banking Products: You Can Take Them with You, So Why Don’t You?," Journal of Financial Services Research, Springer;Western Finance Association, vol. 52(1), pages 123-154, October.
    11. Stefan Hellmer, 2010. "Switching Costs, Switching Benefits and Lock-In Effects — The Reregulated Swedish Heat Market," Energy & Environment, , vol. 21(6), pages 563-575, October.
    12. Esplin, Ryan & Best, Rohan & Scranton, Jessica & Chai, Andreas, 2022. "Who pays the loyalty tax? The relationship between socioeconomic status and switching in Australia's retail electricity markets," Energy Policy, Elsevier, vol. 164(C).
    13. Vassileva, Iana & Wallin, Fredrik & Dahlquist, Erik, 2012. "Understanding energy consumption behavior for future demand response strategy development," Energy, Elsevier, vol. 46(1), pages 94-100.
    14. Watson, Nicole Elizabeth & Huebner, Gesche & Fell, Michael James & Shipworth, David, 2020. "Two energy suppliers are better than one: survey experiments on consumer engagement with local energy in GB," SocArXiv e9nyu, Center for Open Science.
    15. Shin, Kong Joo & Managi, Shunsuke, 2017. "Liberalization of a retail electricity market: Consumer satisfaction and household switching behavior in Japan," Energy Policy, Elsevier, vol. 110(C), pages 675-685.
    16. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.
    17. Fontana, Magda & Iori, Martina & Nava, Consuelo Rubina, 2019. "Switching behavior in the Italian electricity retail market: Logistic and mixed effect Bayesian estimations of consumer choice," Energy Policy, Elsevier, vol. 129(C), pages 339-351.
    18. Andreas Ziegler, 2018. "Heterogeneous preferences and the individual change to alternative electricity contracts," MAGKS Papers on Economics 201827, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    19. Watson, Nicole E. & Huebner, Gesche M. & Fell, Michael J. & Shipworth, David, 2020. "Two energy suppliers are better than one: Survey experiments on consumer engagement with local energy in GB," Energy Policy, Elsevier, vol. 147(C).
    20. Xiaoping He & David Reiner, 2018. "Consumer Engagement in Energy Markets: The Role of Information and Knowledge," Working Papers EPRG 1835, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    21. Stephen Littlechild, 2020. "Online reviews and customer satisfaction: The use of Trustpilot by UK retail energy suppliers and three other sectors," Working Papers EPRG2025, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    22. Vesterberg, Mattias, 2017. "Heterogeneity in price responsiveness of electricity: Contract choice and the role of media coverage," Umeå Economic Studies 940, Umeå University, Department of Economics.
    23. Vesterberg, Mattias, 2018. "The effect of price on electricity contract choice," Energy Economics, Elsevier, vol. 69(C), pages 59-70.
    24. Licheng Sun & Qunwei Wang & Shilong Ge, 2018. "Urban resident energy-saving behavior: a case study under the A2SC framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 515-536, March.
    25. Lanot, Gauthier & Vesterberg, Mattias, 2017. "An empirical model of the decision to switch between electricity price contracts," Umeå Economic Studies 951, Umeå University, Department of Economics.
    26. Itaoka, Kenshi & Chapman, Andrew & Farabi-Asl, Hadi, 2022. "Underpinnings of consumer preferences and participation in Japan's liberalized energy market," Utilities Policy, Elsevier, vol. 76(C).
    27. Xiaoping He & David Reiner, 2017. "Why Consumers Switch Energy Suppliers: The Role of Individual Attitudes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    28. Maxim Alexandru, 2013. "Methodological Considerations Regarding The Segmentation Of Household Energy Consumers," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 1775-1785, July.
    29. Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
    30. Ziegler, Andreas, 2020. "Heterogeneous preferences and the individual change to alternative electricity contracts," Energy Economics, Elsevier, vol. 91(C).
    31. Miguel Flores & Catherine Waddams Price, 2013. "Consumer behaviour in the British retail electricity market," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2013-10, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    32. Hellmer, Stefan & Wårell, Linda, 2009. "On the evaluation of market power and market dominance--The Nordic electricity market," Energy Policy, Elsevier, vol. 37(8), pages 3235-3241, August.
    33. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    34. Erdogan, Murside Rabia & Camgoz, Selin Metin & Karan, Mehmet Baha & Berument, M. Hakan, 2022. "The switching behavior of large-scale electricity consumers in The Turkish electricity retail market," Energy Policy, Elsevier, vol. 160(C).
    35. Anna Airoldi & Michele Polo, 2017. "Opening the Retail Electricity Markets: Puzzles, Drawbacks and Policy Options," IEFE Working Papers 97, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    36. Opolska, Iweta, 2017. "The efficacy of liberalization and privatization in introducing competition into European natural gas markets," Utilities Policy, Elsevier, vol. 48(C), pages 12-21.
    37. Feldhaus, Christoph & Lingens, Jörg & Löschel, Andreas & Zunker, Gerald, 2022. "Encouraging consumer activity through automatic switching of the electricity contract - A field experiment," Energy Policy, Elsevier, vol. 164(C).
    38. Carthy, Philip & Lunn, Pete & Lyons, Sean, 2018. "Demographic variation in active consumer behaviour: Who searches most for retail broadband services?," MPRA Paper 90366, University Library of Munich, Germany.
    39. Hussain, Shahid & Seet, Pi-Shen & Ryan, Maria & Iranmanesh, Mohammad & Cripps, Helen & Salam, Abdul, 2022. "Determinants of switching intention in the electricity markets - An integrated structural model approach," Journal of Retailing and Consumer Services, Elsevier, vol. 69(C).
    40. Yang, Yingkui, 2014. "Understanding household switching behavior in the retail electricity market," Energy Policy, Elsevier, vol. 69(C), pages 406-414.

  60. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.

    Cited by:

    1. ZhongXiang Zhang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," CCEP Working Papers 1208, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Guo, Jian-Xin & Zhu, Lei & Fan, Ying, 2016. "Emission path planning based on dynamic abatement cost curve," European Journal of Operational Research, Elsevier, vol. 255(3), pages 996-1013.
    3. Nilsson, Mats, 2007. "Red light for Green Paper: The EU policy on energy efficiency," Energy Policy, Elsevier, vol. 35(1), pages 540-547, January.
    4. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.
    5. Rave, Tilmann & Triebswetter, Ursula & Wackerbauer, Johann, 2013. "Koordination von Innovations-, Energie- und Umweltpolitik," Studien zum deutschen Innovationssystem 10-2013, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    6. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
    7. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    8. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    9. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    10. Zylicz, Tomasz, 2010. "Goals and Principles of Environmental Policy," International Review of Environmental and Resource Economics, now publishers, vol. 3(4), pages 299-334, May.
    11. Yu, Yang & Li, Hong & Che, Yuyuan & Zheng, Qiongjie, 2017. "The price evolution of wind turbines in China: A study based on the modified multi-factor learning curve," Renewable Energy, Elsevier, vol. 103(C), pages 522-536.
    12. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    13. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia & Ameli, Nadia, 2012. "Going Electric: Expert Survey on the Future of Battery Technologies for Electric Vehicles," Climate Change and Sustainable Development 143123, Fondazione Eni Enrico Mattei (FEEM).
    14. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    15. Joan Canton & Åsa Johannesson Lindén, 2010. "Support schemes for renewable electricity in the EU," European Economy - Economic Papers 2008 - 2015 408, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    16. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    17. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
    18. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
    19. Zhang, Fan, 2013. "How fit are feed-in tariff policies ? evidence from the European wind market," Policy Research Working Paper Series 6376, The World Bank.
    20. Corsatea, Teodora Diana, 2014. "Increasing synergies between institutions and technology developers: Lessons from marine energy," Energy Policy, Elsevier, vol. 74(C), pages 682-696.
    21. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    22. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    23. Sam, Aflaki & Syed Abul, Basher & Andrea, Masini, 2016. "Does economic growth matter? Technology-push, demand-pull and endogenous drivers of innovation in the renewable energy industry," MPRA Paper 69773, University Library of Munich, Germany.
    24. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    25. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    26. Böhringer, Christoph & Cuntz, Alexander & Harhoff, Dietmar & Asane-Otoo, Emmanuel, 2017. "The impact of the German feed-in tariff scheme on innovation: Evidence based on patent filings in renewable energy technologies," Energy Economics, Elsevier, vol. 67(C), pages 545-553.
    27. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    28. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    29. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    30. Kaldasch, Joachim, 2011. "The experience curve and the market size of competitive consumer durable markets," MPRA Paper 33370, University Library of Munich, Germany.
    31. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    32. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo.
    33. Elena Verdolini & Laura Diaz Anadon & Jiaqi Lu & Gregory F. Nemet, 2015. "The Effects of Expert Selection, Elicitation Design, and R&D Assumptions on Experts’ Estimates of the Future Costs of Photovoltaics," Working Papers 2015.01, Fondazione Eni Enrico Mattei.
    34. William A. Pizer & David Popp, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," NBER Working Papers 13053, National Bureau of Economic Research, Inc.
    35. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    36. Diaz-Rainey, Ivan & Ashton, John K., 2008. "Stuck between a ROC and a hard place? Barriers to the take up of green energy in the UK," Energy Policy, Elsevier, vol. 36(8), pages 3043-3051, August.
    37. Hector Pollitt & Philip Summerton & Ger Klaassen, 2015. "A model-based assessment of first-mover advantage and climate policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(2), pages 299-312, April.
    38. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending The Learning Curve," Climate Change and Sustainable Development 206836, Fondazione Eni Enrico Mattei (FEEM).
    39. Michael Smith & Johannes Urpelainen, 2014. "The Effect of Feed-in Tariffs on Renewable Electricity Generation: An Instrumental Variables Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 367-392, March.
    40. Corsatea, Teodora Diana & Giaccaria, Sergio & Arántegui, Roberto Lacal, 2014. "The role of sources of finance on the development of wind technology," Renewable Energy, Elsevier, vol. 66(C), pages 140-149.
    41. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    42. Mignon, Ingrid & Bergek, Anna, 2016. "Investments in renewable electricity production: The importance of policy revisited," Renewable Energy, Elsevier, vol. 88(C), pages 307-316.
    43. Bosetti, Valentina & De Cian, Enrica & Sgobbi, Alessandra & Tavoni, Massimo, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Sustainable Development Papers 55284, Fondazione Eni Enrico Mattei (FEEM).
    44. Fischer, Carolyn & Preonas, Louis, 2010. "Combining Policies for Renewable Energy: Is the Whole Less Than the Sum of Its Parts?," International Review of Environmental and Resource Economics, now publishers, vol. 4(1), pages 51-92, June.
    45. Söderholm, Patrik, 2008. "The political economy of international green certificate markets," Energy Policy, Elsevier, vol. 36(6), pages 2051-2062, June.
    46. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    47. Sung, Bongsuk, 2015. "Public policy supports and export performance of bioenergy technologies: A dynamic panel approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 477-495.
    48. Nicholas H. Johnson & Barry D. Solomon, 2010. "A Net-Present Value Analysis for a Wind Turbine Purchase at a Small US College," Energies, MDPI, vol. 3(5), pages 1-17, May.
    49. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    50. Choi, Hyundo & Anadón, Laura Díaz, 2014. "The role of the complementary sector and its relationship with network formation and government policies in emerging sectors: The case of solar photovoltaics between 2001 and 2009," Technological Forecasting and Social Change, Elsevier, vol. 82(C), pages 80-94.
    51. David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
    52. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    53. Lehmann, Paul, 2009. "Climate Policies with Pollution Externalities and Learning Spillovers," MPRA Paper 21353, University Library of Munich, Germany.
    54. Maria Kopsakangas-Savolainen & Rauli Svento, 2013. "Promotion of Market Access for Renewable Energy in the Nordic Power Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(4), pages 549-569, April.
    55. Womeldorf, Carole A. & Chimeli, Ariaster B., 2014. "A computational fluid dynamics approach to wind prospecting: Lessons from the U.S. Appalachian region," Energy Policy, Elsevier, vol. 73(C), pages 645-653.
    56. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    57. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    58. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    59. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    60. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    61. Osorio, Andrés F. & Arias-Gaviria, Jessica & Devis-Morales, Andrea & Acevedo, Diego & Velasquez, Héctor Iván & Arango-Aramburo, Santiago, 2016. "Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands," Energy Policy, Elsevier, vol. 98(C), pages 713-724.
    62. Darmani, Anna, 2015. "Renewable energy investors in Sweden: A cross-subsector analysis of dynamic capabilities," Utilities Policy, Elsevier, vol. 37(C), pages 46-57.
    63. Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601.
    64. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    65. Benjamin Dachis & Jan Carr, 2011. "Zapped: The High Cost of Ontario's Renewable Electricity Subsidies," e-briefs 117, C.D. Howe Institute.
    66. Ek, Kristina & Persson, Lars & Johansson, Maria & Waldo, Åsa, 2013. "Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities," Energy Policy, Elsevier, vol. 58(C), pages 135-141.
    67. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    68. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    69. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology," Technological Forecasting and Social Change, Elsevier, vol. 83(C), pages 156-169.
    70. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
    71. Bongsuk Sung & Cui Wen, 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market," Energies, MDPI, vol. 11(4), pages 1-18, April.
    72. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    73. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.
    74. Corsatea, Teodora Diana & Giaccaria, Sergio & Covrig, Catalin-Felix & Zaccarelli, Nicola & Ardelean, Mircea, 2016. "RES diffusion and R&D investments in the flexibilisation of the European electricity networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1069-1082.
    75. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
    76. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    77. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    78. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    79. Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601, April.
    80. Thomas Hale & Johannes Urpelainen, 2015. "When and how can unilateral policies promote the international diffusion of environmental policies and clean technology?," Journal of Theoretical Politics, , vol. 27(2), pages 177-205, April.
    81. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo.
    82. Sung, Bongsuk & Song, Woo-Yong, 2013. "Causality between public policies and exports of renewable energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 95-104.
    83. Walters, Ryan & Walsh, Philip R., 2011. "Examining the financial performance of micro-generation wind projects and the subsidy effect of feed-in tariffs for urban locations in the United Kingdom," Energy Policy, Elsevier, vol. 39(9), pages 5167-5181, September.
    84. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    85. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
    86. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    87. Bergek, Anna & Berggren, Christian, 2014. "The impact of environmental policy instruments on innovation: A review of energy and automotive industry studies," Ecological Economics, Elsevier, vol. 106(C), pages 112-123.
    88. Mosher, J.N. & Corscadden, K.W., 2012. "Agriculture's contribution to the renewable energy sector: Policy and economics – Do they add up?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4157-4164.
    89. Teodora Corsatea & Hubert Jayet, 2014. "Spatial patterns of innovation activities in France: market’s role versus public research efforts," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 52(3), pages 739-762, May.
    90. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.

  61. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.

    Cited by:

    1. ZhongXiang Zhang, 2012. "Competitiveness and Leakage Concerns and Border Carbon Adjustments," CCEP Working Papers 1208, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    2. Lafond, François & Farmer, J. Doyne & Greenwald, Diana, 2020. "Can stimulating demand drive costs down? World War II as a natural experiment," INET Oxford Working Papers 2020-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    3. Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
    4. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    5. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
    6. Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
    7. Oikawa, Koki & Managi, Shunsuke, 2015. "R&D in clean technology: A project choice model with learning," Journal of Economic Behavior & Organization, Elsevier, vol. 117(C), pages 175-195.
    8. Santhakumar, Srinivasan & Smart, Gavin & Noonan, Miriam & Meerman, Hans & Faaij, André, 2022. "Technological progress observed for fixed-bottom offshore wind in the EU and UK," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    9. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    10. Alemzero, David & Acheampong, Theophilus & Huaping, Sun, 2021. "Prospects of wind energy deployment in Africa: Technical and economic analysis," Renewable Energy, Elsevier, vol. 179(C), pages 652-666.
    11. Tobias Wiesnethal & Arnaud Mercier & Burkhard Schade & H. Petric & Lazlo Szabo, 2010. "Quantitative Assessment of the Impact of the Strategic Energy Technology Plan on the European Power Sector," JRC Research Reports JRC61065, Joint Research Centre.
    12. Köberle, Alexandre C. & Gernaat, David E.H.J. & van Vuuren, Detlef P., 2015. "Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation," Energy, Elsevier, vol. 89(C), pages 739-756.
    13. Breitschopf, Barbara, 2015. "Impacts of policies on market formation and competitiveness: The case of the PV industry in Germany," Working Papers "Sustainability and Innovation" S10/2015, Fraunhofer Institute for Systems and Innovation Research (ISI).
    14. Franc{c}ois Lafond & Aimee Gotway Bailey & Jan David Bakker & Dylan Rebois & Rubina Zadourian & Patrick McSharry & J. Doyne Farmer, 2017. "How well do experience curves predict technological progress? A method for making distributional forecasts," Papers 1703.05979, arXiv.org, revised Sep 2017.
    15. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2016. "The rationales for technology-specific renewable energy support: Conceptual arguments and their relevance for Germany," UFZ Discussion Papers 4/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    16. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    17. Lancker, Kira & Quaas, Martin F., 2019. "Increasing marginal costs and the efficiency of differentiated feed-in tariffs," Energy Economics, Elsevier, vol. 83(C), pages 104-118.
    18. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    19. Johannes Urpelainen, 2014. "Sinking costs to increase participation: technology deployment agreements enhance climate cooperation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(3), pages 229-240, July.
    20. El Kasmioui, O. & Verbruggen, A. & Ceulemans, R., 2015. "The 2013 reforms of the Flemish renewable electricity support: Missed opportunities," Renewable Energy, Elsevier, vol. 83(C), pages 905-917.
    21. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    22. William A. Pizer & David Popp, 2007. "Endogenizing Technological Change: Matching Empirical Evidence to Modeling Needs," NBER Working Papers 13053, National Bureau of Economic Research, Inc.
    23. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    24. Antoine Dechezleprêtre & David Popp, 2015. "Fiscal and Regulatory Instruments for Clean Technology Development in the European Union," CESifo Working Paper Series 5361, CESifo.
    25. Christian JONEN & Audrey LAUDE, 2011. "Biomasse and CCS: The Influence of the Learning Effect," LEO Working Papers / DR LEO 273, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    26. Tolliver, Clarence & Keeley, Alexander Ryota & Managi, Shunsuke, 2020. "Policy targets behind green bonds for renewable energy: Do climate commitments matter?," Technological Forecasting and Social Change, Elsevier, vol. 157(C).
    27. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending The Learning Curve," Climate Change and Sustainable Development 206836, Fondazione Eni Enrico Mattei (FEEM).
    28. Michael Smith & Johannes Urpelainen, 2014. "The Effect of Feed-in Tariffs on Renewable Electricity Generation: An Instrumental Variables Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 367-392, March.
    29. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    30. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    31. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    32. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    33. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    34. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    35. Lehmann, Paul & Söderholm, Patrik, 2016. "Can technology-specific deployment policies be cost-effective? The case of renewable energy support schemes," UFZ Discussion Papers 1/2016, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    36. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    37. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    38. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    39. Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
    40. David Popp & Richard G. Newell & Adam B. Jaffe, 2009. "Energy, the Environment, and Technological Change," NBER Working Papers 14832, National Bureau of Economic Research, Inc.
    41. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    42. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    43. Héctor M. Núñez, 2013. "How Relevant Has Been the Learning-by-Doing for Brazilian Sugarcane Ethanol Production?," Working papers DTE 552, CIDE, División de Economía.
    44. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    45. Albrecht, Johan & Laleman, Ruben & Vulsteke, Elien, 2015. "Balancing demand-pull and supply-push measures to support renewable electricity in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 267-277.
    46. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    47. Darmani, Anna & Rickne, Annika & Hidalgo, Antonio & Arvidsson, Niklas, 2016. "When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 372-381.
    48. Choi, Donghyun & Kim, Yeong Jae, 2023. "Local and global experience curves for lumpy and granular energy technologies," Energy Policy, Elsevier, vol. 174(C).
    49. Philip Metzger, 2023. "Economics of In-Space Industry and Competitiveness of Lunar-Derived Rocket Propellant," Papers 2303.09011, arXiv.org.
    50. Ahn, Joongha & Woo, JongRoul & Lee, Jongsu, 2015. "Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry," Energy Policy, Elsevier, vol. 78(C), pages 78-90.
    51. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    52. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    53. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
    54. Bistline, John E., 2014. "Energy technology expert elicitations: An application to natural gas turbine efficiencies," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 177-187.
    55. Díaz, Guzmán & Moreno, Blanca & Coto, José & Gómez-Aleixandre, Javier, 2015. "Valuation of wind power distributed generation by using Longstaff–Schwartz option pricing method," Applied Energy, Elsevier, vol. 145(C), pages 223-233.
    56. Reyer Gerlagh & Snorre Kverndokk & Knut Rosendahl, 2009. "Optimal Timing of Climate Change Policy: Interaction Between Carbon Taxes and Innovation Externalities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 369-390, July.
    57. Darmani, Anna, 2015. "Renewable energy investors in Sweden: A cross-subsector analysis of dynamic capabilities," Utilities Policy, Elsevier, vol. 37(C), pages 46-57.
    58. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    59. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," CESifo Working Paper Series 5442, CESifo.
    60. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
    61. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    62. Thomas Boucher & Yuchen Li, 2016. "Technical note: systematic bias in stochastic learning," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3452-3463, June.
    63. Miklós Antal & Ardjan Gazheli & Jeroen C.J.M. van den Bergh, 2012. "Behavioural Foundations of Sustainability Transitions. WWWforEurope Working Paper No. 3," WIFO Studies, WIFO, number 46424, February.
    64. Enrica De Cian & Johannes Buhl & Samuel Carrara & Michela Bevione & Silvia Monetti & Holger Berg, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," Working Papers 2016.66, Fondazione Eni Enrico Mattei.
    65. Kim, Seunghyok & Koo, Jamin & Lee, Chang Jun & Yoon, En Sup, 2012. "Optimization of Korean energy planning for sustainability considering uncertainties in learning rates and external factors," Energy, Elsevier, vol. 44(1), pages 126-134.
    66. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
    67. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
    68. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    69. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    70. Partridge, Ian, 2013. "Renewable electricity generation in India—A learning rate analysis," Energy Policy, Elsevier, vol. 60(C), pages 906-915.
    71. Johannes Emmerling & Laurent Drouet & Lara Aleluia Reis & Michela Bevione & Loic Berger & Valentina Bosetti & Samuel Carrara & Enrica De Cian & Gauthier De Maere D'Aertrycke & Tom Longden & Maurizio M, 2016. "The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways," Working Papers 2016.42, Fondazione Eni Enrico Mattei.
    72. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "A portfolio risk analysis on electricity supply planning," Energy Policy, Elsevier, vol. 36(2), pages 627-641, February.
    73. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    74. Gao, Xue & Rai, Varun & Nemet, Gregory F., 2022. "The roles of learning mechanisms in services: Evidence from US residential solar installations," Energy Policy, Elsevier, vol. 167(C).
    75. Mathias Berthod, 2020. "Commitment and efficiency-inducing tax and subsidy scheme in the development of a clean technology," Working Papers hal-02489971, HAL.
    76. David Popp, 2015. "Using Scientific Publications to Evaluate Government R&D Spending: The Case of Energy," NBER Working Papers 21415, National Bureau of Economic Research, Inc.
    77. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    78. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
    79. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    80. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    81. Ortega, Margarita & Río, Pablo del & Ruiz, Pablo & Thiel, Christian, 2015. "Employment effects of renewable electricity deployment. A novel methodology," Energy, Elsevier, vol. 91(C), pages 940-951.
    82. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
    83. Lohwasser, Richard & Madlener, Reinhard, 2010. "Relating R&D and Investment Policies to CCS Market Diffusion Through Two-Factor Learning," FCN Working Papers 6/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    84. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    85. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    86. Mathias Berthod, 2020. "Commitment and efficiency-inducing tax and subsidy scheme in the development of a clean technology," CEE-M Working Papers hal-02489971, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    87. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    88. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
    89. Ding, H. & Zhou, D.Q. & Liu, G.Q. & Zhou, P., 2020. "Cost reduction or electricity penetration: Government R&D-induced PV development and future policy schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    90. Beck, Marisa & Rivers, Nicholas & Wigle, Randall, 2018. "How do learning externalities influence the evaluation of Ontario's renewables support policies?," Energy Policy, Elsevier, vol. 117(C), pages 86-99.
    91. Grafström, Jonas & Poudineh, Rahmat, 2023. "Invention and Diffusion in the Solar Power Sector," Ratio Working Papers 364, The Ratio Institute.
    92. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    93. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    94. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    95. Chen, Xiaoguang & Khanna, Madhu, 2012. "Explaining the reductions in US corn ethanol processing costs: Testing competing hypotheses," Energy Policy, Elsevier, vol. 44(C), pages 153-159.
    96. Dong, Changgui & Wiser, Ryan, 2013. "The impact of city-level permitting processes on residential photovoltaic installation prices and development times: An empirical analysis of solar systems in California cities," Energy Policy, Elsevier, vol. 63(C), pages 531-542.
    97. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).

  62. Söderholm, Patrik & Ek, Kristina & Pettersson, Maria, 2007. "Wind power development in Sweden: Global policies and local obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 365-400, April.

    Cited by:

    1. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    2. Fjaestad, Maja, 2013. "Winds of time: Lessons from Utö in the Stockholm Archipelago, 1990–2001," Energy Policy, Elsevier, vol. 62(C), pages 124-130.
    3. Wolsink, Maarten, 2007. "Planning of renewables schemes: Deliberative and fair decision-making on landscape issues instead of reproachful accusations of non-cooperation," Energy Policy, Elsevier, vol. 35(5), pages 2692-2704, May.
    4. Söderholm, Patrik & Pettersson, Maria, 2011. "Offshore wind power policy and planning in Sweden," Energy Policy, Elsevier, vol. 39(2), pages 518-525, February.
    5. Ek, Kristina & Persson, Lars, 2014. "Wind farms — Where and how to place them? A choice experiment approach to measure consumer preferences for characteristics of wind farm establishments in Sweden," Ecological Economics, Elsevier, vol. 105(C), pages 193-203.
    6. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    7. Maria Pettersson & Patrik Söderholm, 2014. "Industrial Pollution Control and Efficient Licensing Processes: The Case of Swedish Regulatory Design," Sustainability, MDPI, vol. 6(8), pages 1-22, August.
    8. Damián Copena & David Pérez-Neira & Xavier Simón, 2019. "Local Economic Impact of Wind Energy Development: Analysis of the Regulatory Framework, Taxation, and Income for Galician Municipalities," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    10. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    11. van den Heuvel, Lotte & Blicharska, Malgorzata & Masia, Sara & Sušnik, Janez & Teutschbein, Claudia, 2020. "Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions," Ecosystem Services, Elsevier, vol. 44(C).
    12. Fabrizi, Andrea & Guarini, Giulio & Meliciani, Valentina, 2018. "Green patents, regulatory policies and research network policies," Research Policy, Elsevier, vol. 47(6), pages 1018-1031.
    13. Chien, Taichen & Hu, Jin-Li, 2008. "Renewable energy: An efficient mechanism to improve GDP," Energy Policy, Elsevier, vol. 36(8), pages 3035-3042, August.
    14. Pettersson, Maria & Ek, Kristina & Söderholm, Kristina & Söderholm, Patrik, 2010. "Wind power planning and permitting: Comparative perspectives from the Nordic countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3116-3123, December.
    15. Lindvall, Daniel, 2023. "Why municipalities reject wind power: A study on municipal acceptance and rejection of wind power instalments in Sweden," Energy Policy, Elsevier, vol. 180(C).
    16. Dimitropoulos, Alexandros & Kontoleon, Andreas, 2009. "Assessing the determinants of local acceptability of wind-farm investment: A choice experiment in the Greek Aegean Islands," Energy Policy, Elsevier, vol. 37(5), pages 1842-1854, May.
    17. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    18. Ho, Lip-Wah & Lie, Tek-Tjing & Leong, Paul TM & Clear, Tony, 2018. "Developing offshore wind farm siting criteria by using an international Delphi method," Energy Policy, Elsevier, vol. 113(C), pages 53-67.
    19. Söderholm, Patrik, 2008. "The political economy of international green certificate markets," Energy Policy, Elsevier, vol. 36(6), pages 2051-2062, June.
    20. Anshelm, Jonas & Simon, Haikola, 2016. "Power production and environmental opinions – Environmentally motivated resistance to wind power in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1545-1555.
    21. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    22. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    23. Montes, German Martinez & Martin, Enrique Prados & Bayo, Javier Alegre & Garcia, Javier Ordoñez, 2011. "The applicability of computer simulation using Monte Carlo techniques in windfarm profitability analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4746-4755.
    24. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    25. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    26. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    27. Adams, Michelle & Wheeler, David & Woolston, Genna, 2011. "A participatory approach to sustainable energy strategy development in a carbon-intensive jurisdiction: The case of Nova Scotia," Energy Policy, Elsevier, vol. 39(5), pages 2550-2559, May.
    28. Comodi, Gabriele & Cioccolanti, Luca & Polonara, Fabio & Brandoni, Caterina, 2012. "Local authorities in the context of energy and climate policy," Energy Policy, Elsevier, vol. 51(C), pages 737-748.
    29. Bergmann, Ariel & Colombo, Sergio & Hanley, Nick, 2008. "Rural versus urban preferences for renewable energy developments," Ecological Economics, Elsevier, vol. 65(3), pages 616-625, April.
    30. Haggett, Claire, 2011. "Understanding public responses to offshore wind power," Energy Policy, Elsevier, vol. 39(2), pages 503-510, February.
    31. Michanek, Gabriel & Söderholm, Patrik, 2009. "Licensing of nuclear power plants: The case of Sweden in an international comparison," Energy Policy, Elsevier, vol. 37(10), pages 4086-4097, October.
    32. Darmani, Anna, 2015. "Renewable energy investors in Sweden: A cross-subsector analysis of dynamic capabilities," Utilities Policy, Elsevier, vol. 37(C), pages 46-57.
    33. Feurtey, Évariste & Ilinca, Adrian & Sakout, Anas & Saucier, Carol, 2016. "Institutional factors influencing strategic decision-making in energy policy; a case study of wind energy in France and Quebec (Canada)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1455-1470.
    34. Maryla Maliszewska & Elena Jarocinska & Milan Scasny, 2010. "Modeling Economic, Social and Environmental Implications of a Free Trade Agreement Between the European Union and The Russian Federation," CASE Network Reports 0093, CASE-Center for Social and Economic Research.
    35. Palm, Alvar, 2022. "Innovation systems for technology diffusion: An analytical framework and two case studies," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    36. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    37. Uba, Katrin, 2010. "Who formulates renewable-energy policy? A Swedish example," Energy Policy, Elsevier, vol. 38(11), pages 6674-6683, November.
    38. Hammami, Samiha Mjahed & chtourou, Sahar & Triki, Abdelfattah, 2016. "Identifying the determinants of community acceptance of renewable energy technologies: The case study of a wind energy project from Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 151-160.
    39. Ek, Kristina & Persson, Lars & Johansson, Maria & Waldo, Åsa, 2013. "Location of Swedish wind power—Random or not? A quantitative analysis of differences in installed wind power capacity across Swedish municipalities," Energy Policy, Elsevier, vol. 58(C), pages 135-141.
    40. Elke Kellner, 2019. "Social Acceptance of a Multi-Purpose Reservoir in a Recently Deglaciated Landscape in the Swiss Alps," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    41. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    42. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
    43. van Rijnsoever, Frank J. & Farla, Jacco C.M., 2014. "Identifying and explaining public preferences for the attributes of energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 71-82.
    44. van Rijnsoever, Frank J. & van Mossel, Allard & Broecks, Kevin P.F., 2015. "Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 817-829.
    45. Sarah Hafner & Olivia James & Aled Jones, 2019. "A Scoping Review of Barriers to Investment in Climate Change Solutions," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
    46. Reilly, Kieran & O’Hagan, Anne Marie & Dalton, Gordon, 2015. "Attitudes and perceptions of fishermen on the island of Ireland towards the development of marine renewable energy projects," Marine Policy, Elsevier, vol. 58(C), pages 88-97.
    47. Newell, David, 2018. "Implementing wind power policy – Institutional frameworks and the beliefs of sovereigns," Land Use Policy, Elsevier, vol. 72(C), pages 16-26.
    48. Linnerud, K. & Dugstad, A. & Rygg, B.J., 2022. "Do people prefer offshore to onshore wind energy? The role of ownership and intended use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    49. Caporale, Diana & De Lucia, Caterina, 2015. "Social acceptance of on-shore wind energy in Apulia Region (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1378-1390.
    50. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
    51. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    52. Kang, Moon Jung & Hwang, Jongwoon, 2016. "Structural dynamics of innovation networks funded by the European Union in the context of systemic innovation of the renewable energy sector," Energy Policy, Elsevier, vol. 96(C), pages 471-490.
    53. Feurtey, Evariste & Ilinca, Adrian & Sakout, Anas & Saucier, Carol, 2015. "Lessons learned in France and Quebec regarding financial and legal mechanisms to develop renewable energy: A hybrid model as an acceptable solution for onshore wind?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 34-45.
    54. Zhao, Zhen-yu & Sun, Guang-zheng & Zuo, Jian & Zillante, George, 2013. "The impact of international forces on the Chinese wind power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 131-141.
    55. Vieira, Filipe & Ramos, Helena M., 2009. "Optimization of operational planning for wind/hydro hybrid water supply systems," Renewable Energy, Elsevier, vol. 34(3), pages 928-936.

  63. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.

    Cited by:

    1. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    2. Ek, Kristina & Söderholm, Patrik, 2010. "Technology learning in the presence of public R&D: The case of European wind power," Ecological Economics, Elsevier, vol. 69(12), pages 2356-2362, October.
    3. Wei, Yi-Ming & Qiao, Lu & Lv, Xin, 2020. "The impact of mergers and acquisitions on technology learning in the petroleum industry," Energy Economics, Elsevier, vol. 88(C).
    4. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    5. Elofsson, Katarina, 2014. "International knowledge diffusion and its impact on the cost-effective clean-up of the Baltic Sea," Working Paper Series 2014:06, Swedish University of Agricultural Sciences, Department Economics.
    6. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    7. Handayani, Kamia & Krozer, Yoram & Filatova, Tatiana, 2019. "From fossil fuels to renewables: An analysis of long-term scenarios considering technological learning," Energy Policy, Elsevier, vol. 127(C), pages 134-146.
    8. Alemzero, David & Acheampong, Theophilus & Huaping, Sun, 2021. "Prospects of wind energy deployment in Africa: Technical and economic analysis," Renewable Energy, Elsevier, vol. 179(C), pages 652-666.
    9. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    10. Newbery, David M., 2016. "Towards a green energy economy? The EU Energy Union’s transition to a low-carbon zero subsidy electricity system – Lessons from the UK’s Electricity Market Reform," Applied Energy, Elsevier, vol. 179(C), pages 1321-1330.
    11. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
    12. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    13. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    14. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    15. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industrys low carbon future," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    16. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    17. Beck, Jessica & Kempener, Ruud & Cohen, Brett & Petrie, Jim, 2008. "A complex systems approach to planning, optimization and decision making for energy networks," Energy Policy, Elsevier, vol. 36(8), pages 2803-2813, August.
    18. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
    19. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    20. Haase, Rachel & Bielicki, Jeffrey & Kuzma, Jennifer, 2013. "Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels," Energy Policy, Elsevier, vol. 61(C), pages 1595-1607.
    21. Lin, Boqiang & Long, Houyin, 2014. "Promoting carbon emissions reduction in China's chemical process industry," Energy, Elsevier, vol. 77(C), pages 822-830.
    22. Wenli Qiang & Shuwen Niu & Xiaojie Liu & Xiang Wang & Zhuo Jia & Runqi Dai, 2018. "Analysis of generation cost changes during China’s energy transition," Energy & Environment, , vol. 29(4), pages 456-472, June.
    23. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    24. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
    25. Mathias Mier & Jacqueline Adelowo & Valeriya Azarova, 2022. "Endogenous Technological Change in Power Markets," ifo Working Paper Series 373, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    26. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    27. Patrick Criqui & Silvana Mima & Philippe Menanteau & Alban Kitous, 2015. "Mitigation strategies and energy technology learning: an assessment with the POLES model," Post-Print halshs-00999280, HAL.
    28. Elofsson, Katarina & Gren, Ing-Marie, 2014. "Cost-efficient climate policies for interdependent and uncertain carbon pools," Working Paper Series 2014:7, Swedish University of Agricultural Sciences, Department Economics.
    29. Moglianesi, Andrea & Keppo, Ilkka & Lerede, Daniele & Savoldi, Laura, 2023. "Role of technology learning in the decarbonization of the iron and steel sector: An energy system approach using a global-scale optimization model," Energy, Elsevier, vol. 274(C).
    30. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    31. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    32. Yuan, Chaoqing & Liu, Sifeng & Wu, Junlong, 2009. "Research on energy-saving effect of technological progress based on Cobb-Douglas production function," Energy Policy, Elsevier, vol. 37(8), pages 2842-2846, August.
    33. Kialashaki, Arash & Reisel, John R., 2014. "Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States," Energy, Elsevier, vol. 76(C), pages 749-760.
    34. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    35. Huang, Yun-Hsun & Wu, Jung-Hua, 2008. "A portfolio risk analysis on electricity supply planning," Energy Policy, Elsevier, vol. 36(2), pages 627-641, February.
    36. Bergesen, Joseph D. & Suh, Sangwon, 2016. "A framework for technological learning in the supply chain: A case study on CdTe photovoltaics," Applied Energy, Elsevier, vol. 169(C), pages 721-728.
    37. Jiang, Hong-Dian & Dong, Kangyin & Qing, Jing & Teng, Qiang, 2023. "The role of technical change in low-carbon transformation and crises in the electricity market: A CGE analysis with R&D investment," Energy Economics, Elsevier, vol. 125(C).
    38. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    39. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    40. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    41. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    42. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    43. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo.
    44. Wu, Jung-Hua & Huang, Yun-Hsun, 2014. "Electricity portfolio planning model incorporating renewable energy characteristics," Applied Energy, Elsevier, vol. 119(C), pages 278-287.
    45. Purwanto, Widodo Wahyu & Pratama, Yoga Wienda & Nugroho, Yulianto Sulistyo & Warjito, & Hertono, Gatot Fatwanto & Hartono, Djoni & Deendarlianto, & Tezuka, Tetsuo, 2015. "Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources," Renewable Energy, Elsevier, vol. 81(C), pages 308-318.
    46. Martin Junginger & Wilfried van Sark & André Faaij (ed.), 2010. "Technological Learning in the Energy Sector," Books, Edward Elgar Publishing, number 13741.
    47. Mercure, Jean-François, 2012. "FTT:Power : A global model of the power sector with induced technological change and natural resource depletion," Energy Policy, Elsevier, vol. 48(C), pages 799-811.
    48. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
    49. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.

  64. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.

    Cited by:

    1. Lundmark, Robert & Nolander, Carl & Olofsson, Elias, 2021. "Spatial production structure and input choices of forest products in Sweden," Forest Policy and Economics, Elsevier, vol. 128(C).
    2. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    3. Hammar, Henrik & Löfgren, Åsa, 2007. "Explaining adoption of end of pipe solutions and clean technologies," Working Papers 102, National Institute of Economic Research.
    4. Ramin Sahamie & Dennis Stindt & Christian Nuss, 2013. "Transdisciplinary Research in Sustainable Operations – An Application to Closed‐Loop Supply Chains," Business Strategy and the Environment, Wiley Blackwell, vol. 22(4), pages 245-268, May.
    5. Nilsson, Mats, 2005. "Electric power oligopoly and suspicious minds--a critique of a recently approved merger," Energy Policy, Elsevier, vol. 33(15), pages 2023-2036, October.
    6. Johan Brolund & Robert Lundmark, 2017. "Effect of Environmental Regulation Stringency on the Pulp and Paper Industry," Sustainability, MDPI, vol. 9(12), pages 1-16, December.
    7. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
    8. Onufrey, Ksenia & Bergek, Anna, 2021. "Transformation in a mature industry: The role of business and innovation strategies," Technovation, Elsevier, vol. 105(C).
    9. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    10. Lundmark, Robert, 2008. "Empirical specification of cost reductions associated with accumulated knowledge in the Swedish kraft paper industry," Forest Policy and Economics, Elsevier, vol. 10(7-8), pages 460-466, October.
    11. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.
    12. Kander, Astrid & Schon, Lennart, 2007. "The energy-capital relation--Sweden 1870-2000," Structural Change and Economic Dynamics, Elsevier, vol. 18(3), pages 291-305, September.
    13. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.

  65. Söderholm, Patrik & Strömberg, Lars, 2003. "A utility-eye view of the CO2 compliance-decision process in the European power-sector," Applied Energy, Elsevier, vol. 75(3-4), pages 183-192, July.

    Cited by:

    1. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    2. Pettersson, Fredrik & Söderholm, Patrik, 2009. "The diffusion of renewable electricity in the presence of climate policy and technology learning: The case of Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2031-2040, October.
    3. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    4. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    5. Lindman, Åsa & Söderholm, Patrik, 2016. "Wind energy and green economy in Europe: Measuring policy-induced innovation using patent data," Applied Energy, Elsevier, vol. 179(C), pages 1351-1359.

  66. Soderholm, Patrik & Sundqvist, Thomas, 2003. "Pricing environmental externalities in the power sector: ethical limits and implications for social choice," Ecological Economics, Elsevier, vol. 46(3), pages 333-350, October.

    Cited by:

    1. Gunawardena, U.A.D. Prasanthi, 2010. "Inequalities and externalities of power sector: A case of Broadlands hydropower project in Sri Lanka," Energy Policy, Elsevier, vol. 38(2), pages 726-734, February.
    2. Madlener, Reinhard & Neustadt, Ilja, 2010. "Renewable Energy Policy in the Presence of Innovation: Does Government Pre-Commitment Matter?," FCN Working Papers 4/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised Jun 2010.
    3. Reinhard Madlener & Weiyu Gao & Ilja Neustadt & Peter Zweifel, 2008. "Promoting renewable electricity generation in imperfect markets: price vs. quantity policies," SOI - Working Papers 0809, Socioeconomic Institute - University of Zurich.
    4. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    5. del Rio, Pablo & Gual, Miguel A., 2007. "An integrated assessment of the feed-in tariff system in Spain," Energy Policy, Elsevier, vol. 35(2), pages 994-1012, February.
    6. Li, Dong & Cruz, Jose M., 2022. "Multiperiod supply chain network dynamics under investment in sustainability, externality cost, and consumers’ willingness to pay," International Journal of Production Economics, Elsevier, vol. 247(C).
    7. Markus Zimmer & Jana Lippelt, 2011. "Climate notes: 25 years after Chernobyl," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 64(09), pages 56-59, May.
    8. Madlener, Reinhard & Neustadt, Ilja, 2018. "Renewable energy price-control policy in the presence of innovation: is government pre-commitment preferable?," MPRA Paper 91546, University Library of Munich, Germany, revised 19 Jan 2019.
    9. Duncan Chaplin & Arif Mamun & Ali Protik & John Schurrer & Divya Vohra & Kristine Bos & Hannah Burak & Laura Meyer & Anca Dumitrescu & Christopher Ksoll & Thomas Cook, "undated". "Grid Electricity Expansion in Tanzania by MCC: Findings from a Rigorous Impact Evaluation, Final Report," Mathematica Policy Research Reports 144768f69008442e96369195e, Mathematica Policy Research.
    10. Gulli, Francesco, 2006. "Social choice, uncertainty about external costs and trade-off between intergenerational environmental impacts: The emblematic case of gas-based energy supply decentralization," Ecological Economics, Elsevier, vol. 57(2), pages 282-305, May.
    11. Huiyan Wang & Yong Li & Jia Li & Mengyuan Yu, 2020. "Internalization of External Benefits Brought by Hydropower Development," IJERPH, MDPI, vol. 17(1), pages 1-15, January.
    12. Klaus Skytte, 2006. "Interplay between Environmental Regulation and Power Markets," EUI-RSCAS Working Papers 4, European University Institute (EUI), Robert Schuman Centre of Advanced Studies (RSCAS).
    13. Sovacool, Benjamin K. & Martiskainen, Mari & Hook, Andrew & Baker, Lucy, 2020. "Beyond cost and carbon: The multidimensional co-benefits of low carbon transitions in Europe," Ecological Economics, Elsevier, vol. 169(C).
    14. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    15. Bebbington, Jan & Larrinaga, Carlos, 2014. "Accounting and sustainable development: An exploration," Accounting, Organizations and Society, Elsevier, vol. 39(6), pages 395-413.
    16. Montes, Germán Martínez & del Mar Serrano López, María & del Carmen Rubio Gámez, Maria & Ondina, Antonio Menéndez, 2005. "An overview of renewable energy in Spain. The small hydro-power case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(5), pages 521-534, October.
    17. Zhao, Xiaoli & Yin, Haitao, 2011. "Industrial relocation and energy consumption: Evidence from China," Energy Policy, Elsevier, vol. 39(5), pages 2944-2956, May.
    18. Stuart Cooper, 2007. "Stakeholder Performance Measurement: General Approaches and Methods of Economic Evaluation (English Version)," EKONOMIAZ. Revista vasca de Economía, Gobierno Vasco / Eusko Jaurlaritza / Basque Government, vol. 65(02), pages 260-283.
    19. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    20. Muela, E. & Schweickardt, G. & Garces, F., 2007. "Fuzzy possibilistic model for medium-term power generation planning with environmental criteria," Energy Policy, Elsevier, vol. 35(11), pages 5643-5655, November.
    21. S. Scrieciu & Valerie Belton & Zaid Chalabi & Reinhard Mechler & Daniel Puig, 2014. "Advancing methodological thinking and practice for development-compatible climate policy planning," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(3), pages 261-288, March.
    22. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    23. Azqueta, Diego & Delacamara, Gonzalo, 2006. "Ethics, economics and environmental management," Ecological Economics, Elsevier, vol. 56(4), pages 524-533, April.
    24. David Meintrup & Chang Woon Nam, 2009. "Shadow Market Area for Air Pollutants," Environment and Planning B, , vol. 36(4), pages 664-681, August.
    25. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    26. Hemmati, S. & Ghaderi, S.F. & Ghazizadeh, M.S., 2018. "Sustainable energy hub design under uncertainty using Benders decomposition method," Energy, Elsevier, vol. 143(C), pages 1029-1047.
    27. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    28. Zhao, Xiaoli & Cai, Qiong & Ma, Chunbo & Hu, Yanan & Luo, Kaiyan & Li, William, 2017. "Economic evaluation of environmental externalities in China’s coal-fired power generation," Energy Policy, Elsevier, vol. 102(C), pages 307-317.
    29. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    30. Sascha Samadi, 2017. "The Social Costs of Electricity Generation—Categorising Different Types of Costs and Evaluating Their Respective Relevance," Energies, MDPI, vol. 10(3), pages 1-37, March.
    31. Kim, Sang-Hoon, 2007. "Evaluation of negative environmental impacts of electricity generation: Neoclassical and institutional approaches," Energy Policy, Elsevier, vol. 35(1), pages 413-423, January.
    32. Lorraine Whitmarsh & Martin Wietschel, 2008. "Sustainable Transport Visions: What Role for Hydrogen and Fuel Cell Vehicle Technologies?," Energy & Environment, , vol. 19(2), pages 207-226, March.
    33. Frame, Bob & Cavanagh, Jo, 2009. "Experiences of sustainability assessment: An awkward adolescence," Accounting forum, Elsevier, vol. 33(3), pages 195-208.

  67. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.

    Cited by:

    1. Lundmark, Robert & Nolander, Carl & Olofsson, Elias, 2021. "Spatial production structure and input choices of forest products in Sweden," Forest Policy and Economics, Elsevier, vol. 128(C).
    2. Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
    3. Blomberg, Jerry & Henriksson, Eva & Lundmark, Robert, 2012. "Energy efficiency and policy in Swedish pulp and paper mills: A data envelopment analysis approach," Energy Policy, Elsevier, vol. 42(C), pages 569-579.
    4. Schwab, Olaf & Bull, Gary & Maness, Thomas, 2005. "A mill-specific roundwood demand equation for southern and central Finland," Journal of Forest Economics, Elsevier, vol. 11(2), pages 95-106, September.
    5. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
    6. Etienne Lorang & Antonello Lobianco & Philippe Delacote, 2021. "Sectoral, resource and carbon impacts of increased paper and cardboard recycling," Working Papers 2021.12, FAERE - French Association of Environmental and Resource Economists.
    7. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    8. Lundmark, Robert, 2008. "Empirical specification of cost reductions associated with accumulated knowledge in the Swedish kraft paper industry," Forest Policy and Economics, Elsevier, vol. 10(7-8), pages 460-466, October.
    9. Francesco Nicolli & Nick Johnstone & Patrik Söderholm, 2012. "Resolving failures in recycling markets: the role of technological innovation," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 14(3), pages 261-288, July.
    10. Patrik Söderholm & Tomas Ekvall, 2020. "Metal markets and recycling policies: impacts and challenges," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 33(1), pages 257-272, July.

  68. Berglund, Christer & Soderholm, Patrik, 2003. "Complementing Empirical Evidence on Global Recycling and Trade of Waste Paper," World Development, Elsevier, vol. 31(4), pages 743-754, April.

    Cited by:

    1. Xu, Helian & Feng, Lianyue & Wu, Gang & Zhang, Qi, 2021. "Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Arminen, Heli & Hujala, Maija & Puumalainen, Kaisu & Tuppura, Anni & Toppinen, Anne, 2013. "An update on inter-country differences in recovery and utilization of recycled paper," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 124-135.
    3. Ramin Sahamie & Dennis Stindt & Christian Nuss, 2013. "Transdisciplinary Research in Sustainable Operations – An Application to Closed‐Loop Supply Chains," Business Strategy and the Environment, Wiley Blackwell, vol. 22(4), pages 245-268, May.
    4. Keisaku Higashida, 2012. "Trade in Secondhand Goods, Monitoring of Illegal Trade, and Import Quotas on Legal Trade," Discussion Paper Series 90, School of Economics, Kwansei Gakuin University, revised Jun 2012.
    5. Chengpeng Lu & Xiaoli Pan & Xingpeng Chen & Jinhuang Mao & Jiaxing Pang & Bing Xue, 2021. "Modeling of Waste Flow in Industrial Symbiosis System at City-Region Level: A Case Study of Jinchang, China," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    6. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.

  69. Christer Berglund & Patrik Söderholm, 2003. "An Econometric Analysis of Global Waste Paper Recovery and Utilization," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(3), pages 429-456, November.

    Cited by:

    1. Xu, Helian & Feng, Lianyue & Wu, Gang & Zhang, Qi, 2021. "Evolution of structural properties and its determinants of global waste paper trade network based on temporal exponential random graph models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Antonio Garofalo & Rosalia Castellano & Massimiliano Agovino & Gennaro Punzo & Gaetano Musella, 2019. "How Far is Campania from the Best-Performing Region in Italy? A Territorial-Divide Analysis of Separate Waste Collection," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 142(2), pages 667-688, April.
    3. Abbott, Andrew & Nandeibam, Shasikanta & O'Shea, Lucy, 2013. "Recycling: Social norms and warm-glow revisited," Ecological Economics, Elsevier, vol. 90(C), pages 10-18.
    4. Sun, Changyou, 2015. "An investigation of China's import demand for wood pulp and wastepaper," Forest Policy and Economics, Elsevier, vol. 61(C), pages 113-121.
    5. Andersen, Frits Møller & Larsen, Helge & Skovgaard, Mette & Moll, Stephan & Isoard, Stéphane, 2007. "A European model for waste and material flows," Resources, Conservation & Recycling, Elsevier, vol. 49(4), pages 421-435.
    6. Florian Fizaine, 2019. "The Economics of Recycling Rate: new insights from a Waste Electrical and Electronic Equipment," Policy Papers 2019.01, FAERE - French Association of Environmental and Resource Economists.
    7. Nicolli, Francesco & Mazzanti, Massimiliano, 2013. "Landfill diversion in a decentralized setting: A dynamic assessment of landfill taxes," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 17-23.
    8. Chu-Lun Hsieh & Wen-Hsien Tsai & Yao-Chung Chang, 2020. "Green Activity-Based Costing Production Decision Model for Recycled Paper," Energies, MDPI, vol. 13(10), pages 1-23, May.
    9. Arminen, Heli & Hujala, Maija & Puumalainen, Kaisu & Tuppura, Anni & Toppinen, Anne, 2013. "An update on inter-country differences in recovery and utilization of recycled paper," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 124-135.
    10. Egüez, Alejandro, 2020. "Compliance with the EU Waste Hierarchy: A matter of stringency, enforcement, and time," Umeå Economic Studies 981, Umeå University, Department of Economics.
    11. Damiano Fiorillo & Luigi Senatore, 2020. "Pro-social behaviours, waste concern and recycling behaviour in Italy at the end of the 1990s," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 127-151, April.
    12. Olle Hage & Krister Sandberg & Patrik Söderholm & Christer Berglund, 2018. "The regional heterogeneity of household recycling: a spatial-econometric analysis of Swedish plastic packing waste," Letters in Spatial and Resource Sciences, Springer, vol. 11(3), pages 245-267, October.
    13. Keisaku Higashida, 2012. "Trade in Secondhand Goods, Monitoring of Illegal Trade, and Import Quotas on Legal Trade," Discussion Paper Series 90, School of Economics, Kwansei Gakuin University, revised Jun 2012.
    14. Berglund, Christer & Soderholm, Patrik, 2003. "Complementing Empirical Evidence on Global Recycling and Trade of Waste Paper," World Development, Elsevier, vol. 31(4), pages 743-754, April.
    15. Massimiliano Mazzanti & Roberto Zoboli, 2008. "Waste Generation, Incineration and Landfill Diversion. De-coupling Trends, Socio-Economic Drivers and Policy Effectiveness in the EU," Working Papers 2008.94, Fondazione Eni Enrico Mattei.
    16. Abbott, Andrew & Nandeibam, Shasikanta & O'Shea, Lucy, 2011. "Explaining the variation in household recycling rates across the UK," Ecological Economics, Elsevier, vol. 70(11), pages 2214-2223, September.
    17. Fizaine, Florian, 2020. "The economics of recycling rate: New insights from waste electrical and electronic equipment," Resources Policy, Elsevier, vol. 67(C).
    18. Hatem Abushammala & Muhammad Adil Masood & Salma Taqi Ghulam & Jia Mao, 2023. "On the Conversion of Paper Waste and Rejects into High-Value Materials and Energy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    19. Massimiliano Mazzanti & Anna Montini & Francesco Nicolli, 2008. "Embedding Landfill Diversion in Economic, Geographical and Policy Settings Panel based evidence from Italy," Working Papers 2008.71, Fondazione Eni Enrico Mattei.
    20. Mansikkasalo, Anna & Lundmark, Robert & Söderholm, Patrik, 2014. "Market behavior and policy in the recycled paper industry: A critical survey of price elasticity research," Forest Policy and Economics, Elsevier, vol. 38(C), pages 17-29.
    21. Hage, Olle & Söderholm, Patrik & Berglund, Christer, 2009. "Norms and economic motivation in household recycling: Empirical evidence from Sweden," Resources, Conservation & Recycling, Elsevier, vol. 53(3), pages 155-165.
    22. Ioannis Kostakis & Konstantinos P. Tsagarakis, 2022. "Social and economic determinants of materials recycling and circularity in Europe: an empirical investigation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 263-281, April.
    23. Söderholm, Patrik, 2011. "Taxing virgin natural resources: Lessons from aggregates taxation in Europe," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 911-922.
    24. Hage, Olle, 2007. "The Swedish producer responsibility for paper packaging: An effective waste management policy?," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 314-344.
    25. Andreas Mayer & Willi Haas & Dominik Wiedenhofer & Fridolin Krausmann & Philip Nuss & Gian Andrea Blengini, 2019. "Measuring Progress towards a Circular Economy: A Monitoring Framework for Economy‐wide Material Loop Closing in the EU28," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 62-76, February.
    26. Gaetano Musella & Massimiliano Agovino & Mariaconcetta Casaccia & Alessandro Crociata, 2019. "Evaluating waste collection management: the case of macro-areas and municipalities in Italy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(6), pages 2857-2889, December.
    27. Massimiliano Mazzanti & Roberto Zoboli, 2009. "Municipal Waste Kuznets Curves: Evidence on Socio-Economic Drivers and Policy Effectiveness from the EU," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(2), pages 203-230, October.
    28. Baillie, Caroline & Matovic, Darko & Thamae, Thimothy & Vaja, Shanil, 2011. "Waste-based composites—Poverty reducing solutions to environmental problems," Resources, Conservation & Recycling, Elsevier, vol. 55(11), pages 973-978.

  70. Patrik Söderholm, 2001. "The Deliberative Approach in Environmental Valuation," Journal of Economic Issues, Taylor & Francis Journals, vol. 35(2), pages 487-495, June.

    Cited by:

    1. Jan Hanousek & Randall K. Filer, 2001. "Consumers' Opinion of Inflation Bias Due to Quality Improvements in Transition in the Czech Republic," Development and Comp Systems 0110009, University Library of Munich, Germany.
    2. Bartkowski, Bartosz & Lienhoop, Nele, 2016. "Beyond rationality, towards reasonableness: Deliberative monetary valuation and Amartya Sen’s approach to rationality," 90th Annual Conference, April 4-6, 2016, Warwick University, Coventry, UK 236292, Agricultural Economics Society.
    3. Jan Hanousek & Randall K. Filer, 2004. "Consumers' Opinion of Inflation Bias Due to Quality Improvements," William Davidson Institute Working Papers Series 2004-681, William Davidson Institute at the University of Michigan.
    4. Schlapfer, Felix, 2008. "Contingent valuation: A new perspective," Ecological Economics, Elsevier, vol. 64(4), pages 729-740, February.
    5. Prof Clem Tisdell & R. Bandara, 2003. "Does The Economic Value Of The Asian Elephant To Urban Dwellers Exceed Their Cost To The Farmers? A Sri Lankan Study," Discussion Papers Series 325, School of Economics, University of Queensland, Australia.
    6. Michael Ahlheim & Benchaphun Ekasingh & Oliver Frör & Jirawan Kitchaicharoen & Andreas Neef & Chapika Sangkapitux & Nopasom Sinphurmsukskul, 2008. "Better than their reputation - A case for mail surveys in contingent valuation," Diskussionspapiere aus dem Institut für Volkswirtschaftslehre der Universität Hohenheim 297/2008, Department of Economics, University of Hohenheim, Germany.
    7. Niclas Berggren, 2012. "The Calculus of Consent: some Swedish connections," Public Choice, Springer, vol. 152(3), pages 313-321, September.
    8. Bartkowski, Bartosz & Lienhoop, Nele, 2018. "Beyond Rationality, Towards Reasonableness: Enriching the Theoretical Foundation of Deliberative Monetary Valuation," Ecological Economics, Elsevier, vol. 143(C), pages 97-104.
    9. Ahlheim, Michael & Fror, Oliver, 2003. "Valuing the non-market production of agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 52(08), pages 1-14.
    10. Michael Ahlheim & Benchaphun Ekasingh & Oliver Frör & Jirawan Kitchaincharoen & Andreas Neef & Chapika Sangkapitux & Nopasom Sinphurmsukskul, 2007. "Using Citizen Expert Groups in Environmental Valuation - Lessons from a CVM study in Northern Thailand," Diskussionspapiere aus dem Institut für Volkswirtschaftslehre der Universität Hohenheim 283/2007, Department of Economics, University of Hohenheim, Germany.

  71. Soderholm, Patrik, 2001. "Fossil fuel flexibility in west European power generation and the impact of system load factors," Energy Economics, Elsevier, vol. 23(1), pages 77-97, January.

    Cited by:

    1. Jaraite, Jurate & Di Maria, Corrado, 2011. "Efficiency, Productivity and Environmental Policy: A Case Study of Power Generation in the EU," CERE Working Papers 2011:3, CERE - the Center for Environmental and Resource Economics.
    2. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    3. Daniel J. Tulloch, Ivan Diaz-Rainey, and I.M. Premachandra, 2017. "The Impact of Liberalization and Environmental Policy on the Financial Returns of European Energy Utilities," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    4. J. Scott Holladay & Steven Soloway, 2015. "The Environmental Impacts of Fuel Switching Power Plants," Working Papers 2015-05, University of Tennessee, Department of Economics.
    5. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    6. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
    7. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    8. Natalia Vechiu & Oscar Kuikeu, 2009. "The impact of globalization on FDIs: an empirical assessment for Central and Eastern European Countries," Post-Print hal-01881848, HAL.
    9. BOBTCHEFF Catherine, 2006. "Optimal Dynamic Management of a Renewable Energy Source under Uncertainty," LERNA Working Papers 06.21.214, LERNA, University of Toulouse.
    10. MAHENC Philippe, 2008. "Optimal environmental taxation when green alternative is available," LERNA Working Papers 08.04.248, LERNA, University of Toulouse.
    11. Verdolini, Elena & Johnstone, Nick & Hascic, Ivan, 2011. "Technological Change, Fuel Efficiency and Carbon Intensity in Electricity Generation: A Cross-Country Empirical Study," Climate Change and Sustainable Development 120043, Fondazione Eni Enrico Mattei (FEEM).
    12. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2022. "The relationship between carbon-intensive fuel and renewable energy stock prices under the emissions trading system," Energy Economics, Elsevier, vol. 114(C).
    13. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
    14. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    15. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    16. A. Ellerman & Barbara Buchner, 2008. "Over-Allocation or Abatement? A Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(2), pages 267-287, October.
    17. Saam, Marianne & Papageorgiou, Chris & Schulte, Patrick, 2014. "Elasticity of Substitution between Clean and Dirty Energy Inputs - A Macroeconomic Perspective," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100414, Verein für Socialpolitik / German Economic Association.
    18. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    19. Trueby, Johannes & Paulus, Moritz, 2011. "Market Structure Scenarios in International Steam Coal Trade," EWI Working Papers 2011-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. Roques, F.A., 2007. "Technology Choices for New Entrants in Liberalised Markets: The Value of Operating Flexibility and Contractual Arrangements," Cambridge Working Papers in Economics 0759, Faculty of Economics, University of Cambridge.
    21. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    22. Harald Tauchmann, 2005. "Co2 Abatement and Fuel Mix in German Electric Power Generation — Is the “Ecological Electricity Tax†Ecologically Effective?," Energy & Environment, , vol. 16(2), pages 255-271, March.
    23. J. Scott Holladay and Steven Soloway, 2016. "The Environmental Impacts of Fuel Switching Electricity Generators," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    24. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
    25. Lappi, Pauli & Ollikka, Kimmo & Ollikainen, Markku, 2010. "Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion," Energy Policy, Elsevier, vol. 38(2), pages 1079-1086, February.
    26. Meyer Andrew & Pac Grzegorz, 2015. "How Responsive Are EU Coal-Burning Plants to Changes in Energy Prices?," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 15(3), pages 1481-1506, July.
    27. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    28. Elisa Lanzi & Ian Sue Wing, 2013. "Capital Malleability, Emission Leakage and the Cost of Partial Climate Policies: General Equilibrium Analysis of the European Union Emission Trading System," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(2), pages 257-289, June.

  72. Soderholm, Patrik, 2000. "Fuel flexibility in the West European power sector," Resources Policy, Elsevier, vol. 26(3), pages 157-170, September.

    Cited by:

    1. Matisoff, Daniel C. & Noonan, Douglas S. & Cui, Jinshu, 2014. "Electric utilities, fuel use, and responsiveness to fuel prices," Energy Economics, Elsevier, vol. 46(C), pages 445-452.
    2. Blomberg, Jerry & Söderholm, Patrik, 2011. "Factor demand flexibility in the primary aluminium industry: Evidence from stagnating and expanding regions," Resources Policy, Elsevier, vol. 36(3), pages 238-248, September.
    3. Wadim Strielkowski & Michal Mirvald & Michael Pedersen, 2014. "Energy Integration in European Power Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 506-515.
    4. Gao, Jing & Nelson, Robert & Zhang, Lei, 2013. "Substitution in the electric power industry: An interregional comparison in the eastern US," Energy Economics, Elsevier, vol. 40(C), pages 316-325.
    5. Furió, Dolores & Chuliá, Helena, 2012. "Price and volatility dynamics between electricity and fuel costs: Some evidence for Spain," Energy Economics, Elsevier, vol. 34(6), pages 2058-2065.
    6. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    7. Månsson, André & Johansson, Bengt & Nilsson, Lars J., 2014. "Assessing energy security: An overview of commonly used methodologies," Energy, Elsevier, vol. 73(C), pages 1-14.
    8. Ljerka Cerovic & Dario Maradin & Sa a Cegar, 2014. "From the Restructuring of the Power Sector to Diversification of Renewable Energy Sources: Preconditions for Efficient and Sustainable Electricity Market," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 599-609.
    9. Tauchmann, H., 2006. "Firing the furnace? An econometric analysis of utilities' fuel choice," Energy Policy, Elsevier, vol. 34(18), pages 3898-3909, December.
    10. Michanek, Gabriel & Söderholm, Patrik, 2009. "Licensing of nuclear power plants: The case of Sweden in an international comparison," Energy Policy, Elsevier, vol. 37(10), pages 4086-4097, October.
    11. Söderholm, Patrik & Wårell, Linda, 2011. "Market opening and third party access in district heating networks," Energy Policy, Elsevier, vol. 39(2), pages 742-752, February.
    12. Liu, Yaqin & Zhang, Jingchao & Zhu, Zhishuang & Zhao, Guohao, 2019. "Impacts of the 3E (economy, energy and environment) coordinated development on energy mix in China: The multi-objective optimisation perspective," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 56-64.
    13. Hyung-Seok Jeong & Ju-Hee Kim & Seung-Hoon Yoo, 2021. "South Korean Public Acceptance of the Fuel Transition from Coal to Natural Gas in Power Generation," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    14. Yang, Chi-Jen & Xuan, Xiaowei & Jackson, Robert B., 2012. "China's coal price disturbances: Observations, explanations, and implications for global energy economies," Energy Policy, Elsevier, vol. 51(C), pages 720-727.
    15. A. Ellerman & Barbara Buchner, 2008. "Over-Allocation or Abatement? A Preliminary Analysis of the EU ETS Based on the 2005–06 Emissions Data," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 41(2), pages 267-287, October.
    16. Pettersson, Fredrik & Söderholm, Patrik & Lundmark, Robert, 2012. "Fuel switching and climate and energy policies in the European power generation sector: A generalized Leontief model," Energy Economics, Elsevier, vol. 34(4), pages 1064-1073.
    17. Colm McCarthy & Jeremiah O'Dwyer & Richard Troy, 2006. "Measuring fuel diversity in power generation," Working Papers 200618, School of Economics, University College Dublin.
    18. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.