IDEAS home Printed from https://ideas.repec.org/a/zbw/ifweej/201120.html
   My bibliography  Save this article

A new method for measuring tail exponents of firm size distributions

Author

Listed:
  • Fujimoto, Shouji
  • Ishikawa, Atushi
  • Mizuno, Takayuki
  • Watanabe, Tsutomu

Abstract

The authors propose a new method for estimating the power-law exponents of firm size variables. Their focus is on how to empirically identify a range in which a firm size variable follows a power-law distribution. On the one hand, as is well known a firm size variable follows a power-law distribution only beyond some threshold. On the other hand, in almost all empirical exercises, the right end part of a distribution deviates from a power-law due to finite size effects. The authors modify the method proposed by Malevergne et al. (2011). In this way they can identify both the lower and the upper thresholds and then estimate the power-law exponent using observations only in the range defined by the two thresholds. They apply this new method to various firm size variables, including annual sales, the number of workers, and tangible fixed assets for firms in more than thirty countries.

Suggested Citation

  • Fujimoto, Shouji & Ishikawa, Atushi & Mizuno, Takayuki & Watanabe, Tsutomu, 2011. "A new method for measuring tail exponents of firm size distributions," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-20.
  • Handle: RePEc:zbw:ifweej:201120
    DOI: 10.5018/economics-ejournal.ja.2011-20
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.5018/economics-ejournal.ja.2011-20
    Download Restriction: no

    File URL: https://www.econstor.eu/bitstream/10419/52690/1/679413707.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5018/economics-ejournal.ja.2011-20?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramsden, J.J. & Kiss-Haypál, Gy., 2000. "Company size distribution in different countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 277(1), pages 220-227.
    2. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2010. "The Anderson–Darling test of fit for the power-law distribution from left-censored samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3508-3515.
    3. Okuyama, K & Takayasu, M & Takayasu, H, 1999. "Zipf's law in income distribution of companies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 269(1), pages 125-131.
    4. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2005. "On fitting the Pareto–Levy distribution to stock market index data: Selecting a suitable cutoff value," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 437-449.
    5. Gaffeo, Edoardo & Gallegati, Mauro & Palestrini, Antonio, 2003. "On the size distribution of firms: additional evidence from the G7 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 117-123.
    6. Zhang, Jianhua & Chen, Qinghua & Wang, Yougui, 2009. "Zipf distribution in top Chinese firms and an economic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(10), pages 2020-2024.
    7. Hisano, Ryohei & Mizuno, Takayuki, 2011. "Sales distribution of consumer electronics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 309-318.
    8. H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2010. "The Anderson-Darling test of fit for the power law distribution from left censored samples," Papers 1004.0417, arXiv.org.
    9. Stanley, Michael H. R. & Buldyrev, Sergey V. & Havlin, Shlomo & Mantegna, Rosario N. & Salinger, Michael A. & Eugene Stanley, H., 1995. "Zipf plots and the size distribution of firms," Economics Letters, Elsevier, vol. 49(4), pages 453-457, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shouji Fujimoto & Takayuki Mizuno & Atushi Ishikawa, 2022. "Interpolation of non-random missing values in financial statements’ big data using CatBoost," Journal of Computational Social Science, Springer, vol. 5(2), pages 1281-1301, November.
    2. Torsten Heinrich & Jangho Yang & Shuanping Dai, 2020. "Growth, development, and structural change at the firm-level: The example of the PR China," Papers 2012.14503, arXiv.org.
    3. Heinrich, Torsten & Dai, Shuanping, 2016. "Diversity of firm sizes, complexity, and industry structure in the Chinese economy," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 90-106.
    4. Vitezić Vanja & Srhoj Stjepan & Perić Marko, 2018. "Investigating Industry Dynamics in a Recessionary Transition Economy," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 43-67, June.
    5. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2016. "Power laws in market capitalization during the dot-com and Shanghai bubble periods," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 445-454, December.
    6. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2016. "Power laws in market capitalization during the Dot-com and Shanghai bubble periods," UTokyo Price Project Working Paper Series 070, University of Tokyo, Graduate School of Economics.
    7. Shouji Fujimoto & Atushi Ishikawa & Takayuki Mizuno, 2022. "Copula-Based Synthetic Data Generation in Firm-Size Variables," The Review of Socionetwork Strategies, Springer, vol. 16(2), pages 479-492, October.
    8. Junho Na & Jeong-dong Lee & Chulwoo Baek, 2017. "Is the service sector different in size heterogeneity?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 95-120, April.
    9. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2016. "Power laws in market capitalization during the Dot-com and Shanghai bubble periods," CARF F-Series CARF-F-392, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Mizuno, Takayuki & Ohnishi, Takaaki & Watanabe, Tsutomu, 2016. "Power law in market capitalization during Dot-com and Shanghai bubble periods," HIT-REFINED Working Paper Series 60, Institute of Economic Research, Hitotsubashi University.
    11. Gualandi, Stefano & Toscani, Giuseppe, 2018. "Pareto tails in socio-economic phenomena: A kinetic description," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-17.
    12. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fujimoto, Shouji & Ishikawa, Atushi & Mizuno, Takayuki & Watanabe, Tsutomu, 2011. "A new method for measuring tail exponents of firm size distributions," Economics Discussion Papers 2011-29, Kiel Institute for the World Economy (IfW Kiel).
    2. Fujimoto, S. & Ishikawa, A. & Mizuno, T. & Watanabe, T. & 渡辺, 努 & ワタナベ, ツトム, 2011. "A New Method for Measuring Tail Exponents of Firm Size Distributions," Working Paper Series 7, Center for Interfirm Network, Institute of Economic Research, Hitotsubashi University.
    3. Junho Na & Jeong-dong Lee & Chulwoo Baek, 2017. "Is the service sector different in size heterogeneity?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 95-120, April.
    4. Pascoal, Rui & Augusto, Mário & Monteiro, A.M., 2016. "Size distribution of Portuguese firms between 2006 and 2012," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 342-355.
    5. Hernández-Pérez, R., 2010. "An analogy of the size distribution of business firms with Bose–Einstein statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3837-3843.
    6. Guo, Jinzhong & Xu, Qi & Chen, Qinghua & Wang, Yougui, 2013. "Firm size distribution and mobility of the top 500 firms in China, the United States and the world," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2903-2914.
    7. Petra Štamfestová & Lukáš Sobíšek & Jiří Hnilica, 2023. "Firm Size Distribution in the Central European Context," Central European Business Review, Prague University of Economics and Business, vol. 2023(5), pages 151-175.
    8. Touzani, Samir & Van Buskirk, Robert, 2016. "Estimating sales and sales market share from sales rank data for consumer appliances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 266-276.
    9. Wang, Yuanjun & You, Shibing, 2016. "An alternative method for modeling the size distribution of top wealth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 443-453.
    10. Da Silva, Sergio & Matsushita, Raul & Giglio, Ricardo & Massena, Gunther, 2018. "Granularity of the top 1,000 Brazilian companies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 68-73.
    11. Hernández-Pérez, R. & Angulo-Brown, F. & Tun, Dionisio, 2006. "Company size distribution for developing countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 359(C), pages 607-618.
    12. Cortés, Lina M. & Mora-Valencia, Andrés & Perote, Javier, 2017. "Measuring firm size distribution with semi-nonparametric densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 35-47.
    13. Kang, Sang Hoon & Jiang, Zhuhua & Cheong, Chongcheul & Yoon, Seong-Min, 2011. "Changes of firm size distribution: The case of Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 319-327.
    14. Montebruno, Piero & Bennett, Robert J. & van Lieshout, Carry & Smith, Harry, 2019. "A tale of two tails: Do Power Law and Lognormal models fit firm-size distributions in the mid-Victorian era?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 858-875.
    15. Atushi Ishikawa & Shouji Fujimoto & Takayuki Mizuno & Tsutomu Watanabe, 2017. "Dependence of the decay rate of firm activities on firm age," Evolutionary and Institutional Economics Review, Springer, vol. 14(2), pages 351-362, December.
    16. Heinrich, Torsten & Dai, Shuanping, 2016. "Diversity of firm sizes, complexity, and industry structure in the Chinese economy," Structural Change and Economic Dynamics, Elsevier, vol. 37(C), pages 90-106.
    17. Alegria, Carlos & Schaeck, Klaus, 2008. "On measuring concentration in banking systems," Finance Research Letters, Elsevier, vol. 5(1), pages 59-67, March.
    18. Andreas Hefti & Julia Lareida, 2021. "Competitive attention, Superstars and the Long Tail," ECON - Working Papers 383, Department of Economics - University of Zurich.
    19. Pascoal, Rui & Augusto, Mário & Monteiro, A.M., 2016. "Size distribution of Portuguese firms between 2006 and 2012," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 342-355.
    20. Ji, Guseon & Dai, Bingcun & Park, Sung-Pil & Ahn, Kwangwon, 2020. "The origin of collective phenomena in firm sizes," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).

    More about this item

    Keywords

    econophysics; power-law distributions; power-law exponents; firm size variables; finite size effect;
    All these keywords.

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • D20 - Microeconomics - - Production and Organizations - - - General
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifweej:201120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.