Advanced Search
MyIDEAS: Login to save this article or follow this journal

Monotonic Support Vector Machines For Credit Risk Rating

Contents:

Author Info

  • MICHAEL DOUMPOS

    ()
    (Department of Production Engineering and Management, Technical University of Crete, University Campus, 73100 Chania, Greece)

  • CONSTANTIN ZOPOUNIDIS

    ()
    (Department of Production Engineering and Management, Technical University of Crete, University Campus, 73100 Chania, Greece)

Registered author(s):

    Abstract

    Credit rating models are widely used by banking institutions to assess the creditworthiness of credit applicants and to estimate the probability of default. Several pattern classification algorithms are used for the development of such models. In contrast to other pattern classification tasks, however, credit rating models are not only expected to provide accurate predictions, but also to make clear economic sense. Within this context, the estimated probability of default is often required to be a monotone function of the independent variables. Most machine learning techniques do not take this requirement into account. In this paper, monotonicity hints are used to address this issue within the modeling framework of support vector machines (SVM), which have become increasingly popular in this field. Non-linear SVM credit rating models are developed with linear programming, taking into account the monotonicity requirement. The obtained results indicate that the introduction of monotonicity hints improves the predictive ability of the models.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=pdf&id=pii:S1793005709001520
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=html&id=pii:S1793005709001520
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal New Mathematics and Natural Computation.

    Volume (Year): 05 (2009)
    Issue (Month): 03 ()
    Pages: 557-570

    as in new window
    Handle: RePEc:wsi:nmncxx:v:05:y:2009:i:03:p:557-570

    Contact details of provider:
    Web page: http://www.worldscinet.com/nmnc/nmnc.shtml

    Order Information:
    Email:

    Related research

    Keywords: Credit rating; support vector machines; linear programming;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:05:y:2009:i:03:p:557-570. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.