Advanced Search
MyIDEAS: Login to save this article or follow this journal

The Neurobiological Infrastructure Of Natural Computing: Intentionality

Contents:

Author Info

  • WALTER J. FREEMAN

    ()
    (Department of Molecular & Cell Biology, University of California at Berkeley, Berkeley CA 94720-3206, USA)

Registered author(s):

    Abstract

    Brains and computers are both dynamical systems that manipulate symbols, but they differ fundamentally in their architectures and operations. Human brains do mathematics; computers do not. Computers manipulate symbols that humans put into them without grounding them in what they represent. Human brains intentionally direct the body to make symbols, and they use the symbols to represent internal states. The symbols are outside the brain. Inside the brains, the construction is effected by spatiotemporal patterns of neural activity that are operators, not symbols. The operations include formation of sequences of neural activity patterns that we observe by their electrical signs. The process is by neurodynamics, not by logical rule-driven symbol manipulation. The aim of simulating human natural computing should be to simulate the operators. In its simplest form natural computing serves for communication of meaning. Neural operators implement non-symbolic communication of internal states by all mammals, including humans, through intentional actions. The neural operators that implement symbol formation must differ, but how is unknown, so we cannot yet simulate human natural computing. Here, I propose that symbol-making operators evolved from neural mechanisms of intentional action by modification of non-symbolic operators. Both kinds of operators can be investigated by their signs of neuroelectric activity. I propose that the postulated differences should be sought by classification of the spatial textures of the signs in EEG recorded from the scalp overlying those cortical structures unique to humans in the brain that I designate as koniocortex, while the subjects are engaged in elementary arithmetic operations.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=pdf&id=pii:S1793005709001179
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=html&id=pii:S1793005709001179
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal New Mathematics and Natural Computation.

    Volume (Year): 05 (2009)
    Issue (Month): 01 ()
    Pages: 19-29

    as in new window
    Handle: RePEc:wsi:nmncxx:v:05:y:2009:i:01:p:19-29

    Contact details of provider:
    Web page: http://www.worldscinet.com/nmnc/nmnc.shtml

    Order Information:
    Email:

    Related research

    Keywords: AM pattern; electrocorticogram ECoG; electroencephalogram EEG; koniocortex; neural operator; number; neurodynamics; symbol;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:05:y:2009:i:01:p:19-29. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.