Advanced Search
MyIDEAS: Login to save this article or follow this journal

Improving Purchasing Behavior Predictions By Data Augmentation With Situational Variables

Contents:

Author Info

  • PHILIPPE BAECKE

    ()
    (Faculty of Economics and Business Administration, Department of Marketing, Ghent University, Tweekerkenstraat 2, B-9000 Ghent, Belgium)

  • DIRK VAN DEN POEL

    ()
    (Faculty of Economics and Business Administration, Department of Marketing, Ghent University, Tweekerkenstraat 2, B-9000 Ghent, Belgium)

Abstract

Nowadays, an increasing number of information technology tools are implemented in order to support decision making about marketing strategies and improve customer relationship management (CRM). Consequently, an improvement in CRM can be obtained by enhancing the databases on which these information technology tools are based. This study shows that data augmentation with situational variables of the purchase occasion can significantly improve purchasing behavior predictions for a home vending company. Three dimensions of situational variables are examined: physical surroundings, temporal perspective and social surroundings respectively represented by weather, time, and salesperson variables. The smallest, but still significant, increase in predictive performance was measured by enhancing the model with time variables. Besides the moment of the day, this study shows that the incorporation of weather variables, and more specifically sunshine, can also improve the accuracy of a CRM model. Finally, the best improvement in purchasing behavior predictions was obtained by taking the salesperson effect into account using a multilevel model.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=pdf&id=pii:S0219622010004135
Download Restriction: Access to full text is restricted to subscribers.

File URL: http://www.worldscinet.com/cgi-bin/details.cgi?type=html&id=pii:S0219622010004135
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by World Scientific Publishing Co. Pte. Ltd. in its journal International Journal of Information Technology and Decision Making.

Volume (Year): 09 (2010)
Issue (Month): 06 ()
Pages: 853-872

as in new window
Handle: RePEc:wsi:ijitdm:v:09:y:2010:i:06:p:853-872

Contact details of provider:
Web page: http://www.worldscinet.com/ijitdm/ijitdm.shtml

Order Information:
Email:

Related research

Keywords: Customer relationship management (CRM); data enhancement; multilevel model; situational variables; purchase predictions; home vending; predictive analytics;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. P. Baecke & D. Van Den Poel, 2009. "Data Augmentation by Predicting Spending Pleasure Using Commercially Available External Data," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/596, Ghent University, Faculty of Economics and Business Administration.
  2. Thomas J. Steenburgh & Andrew Ainslie & Peder Hans Engebretson, 2003. "Massively Categorical Variables: Revealing the Information in Zip Codes," Marketing Science, INFORMS, vol. 22(1), pages 40-57, August.
  3. Van den Poel, Dirk & Buckinx, Wouter, 2005. "Predicting online-purchasing behaviour," European Journal of Operational Research, Elsevier, vol. 166(2), pages 557-575, October.
  4. Levy, Ori & Galili, Itai, 2008. "Stock purchase and the weather: Individual differences," Journal of Economic Behavior & Organization, Elsevier, vol. 67(3-4), pages 755-767, September.
  5. K. Coussement & D. Van Den Poel, 2008. "Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/527, Ghent University, Faculty of Economics and Business Administration.
  6. Wagner Kamakura & Carl Mela & Asim Ansari & Anand Bodapati & Pete Fader & Raghuram Iyengar & Prasad Naik & Scott Neslin & Baohong Sun & Peter Verhoef & Michel Wedel & Ron Wilcox, 2005. "Choice Models and Customer Relationship Management," Marketing Letters, Springer, vol. 16(3), pages 279-291, December.
  7. A. Prinzie & D. Van Den Poel, 2007. "Random Forrests for Multiclass classification: Random Multinomial Logit," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 07/435, Ghent University, Faculty of Economics and Business Administration.
  8. W. Buckinx & E. Moons & D. Van Den Poel & G. Wets, 2003. "Customer-Adapted Coupon Targeting Using Feature Selection," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/201, Ghent University, Faculty of Economics and Business Administration.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. P. Baecke & D. Van Den Poel, 2012. "Improving Customer Acquisition Models by Incorporating Spatial Autocorrelation at Different Levels of Granularity," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/819, Ghent University, Faculty of Economics and Business Administration.
  2. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
  3. P. Baecke & D. Van Den Poel, 2012. "Including Spatial Interdependence in Customer Acquisition Models: a Cross-Category Comparison," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/788, Ghent University, Faculty of Economics and Business Administration.
  4. D. Thorleuchter & D. Van Den Poel & A. Prinzie, 2011. "Analyzing existing customers’ websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 11/733, Ghent University, Faculty of Economics and Business Administration.
  5. M. Ballings & D. Van Den Poel & E. Verhagen, 2013. "Evaluating the Added Value of Pictorial Data for Customer Churn Prediction," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 13/869, Ghent University, Faculty of Economics and Business Administration.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wsi:ijitdm:v:09:y:2010:i:06:p:853-872. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Tai Tone Lim).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.