IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v39y1992i4p487-507.html
   My bibliography  Save this article

Minimal forecast horizons in equipment replacement models with multiple technologies and general switching costs

Author

Listed:
  • S. Bylka
  • S. Sethi
  • G. Sorger

Abstract

This article considers the problem of equipment replacement in which the replacement decision at a particular time must take into account (i) the state of the existing machine in use, (ii) the available replacement alternatives at the time, (iii) the future advances in the relevant technologies with regard to the equipment under consideration, and (iv) costs of switching between different technologies. A methodology that attains minimal forecast horizons for the problem is developed. A numerical example illustrates the methodology.

Suggested Citation

  • S. Bylka & S. Sethi & G. Sorger, 1992. "Minimal forecast horizons in equipment replacement models with multiple technologies and general switching costs," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 487-507, June.
  • Handle: RePEc:wly:navres:v:39:y:1992:i:4:p:487-507
    DOI: 10.1002/1520-6750(199206)39:43.0.CO;2-6
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199206)39:43.0.CO;2-6
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199206)39:43.0.CO;2-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey M. Wagner & Thomson M. Whitin, 1958. "Dynamic Version of the Economic Lot Size Model," Management Science, INFORMS, vol. 5(1), pages 89-96, October.
    2. Suresh Chand & Suresh Sethi, 1982. "Planning horizon procedures for machine replacement models with several possible replacement alternatives," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(3), pages 483-493, September.
    3. Suresh Sethi & Suresh Chand, 1979. "Planning Horizon Procedures for Machine Replacement Models," Management Science, INFORMS, vol. 25(2), pages 140-151, February.
    4. Rolf A. Lundin & Thomas E. Morton, 1975. "Planning Horizons for the Dynamic Lot Size Model: Zabel vs. Protective Procedures and Computational Results," Operations Research, INFORMS, vol. 23(4), pages 711-734, August.
    5. William P. Pierskalla & John A. Voelker, 1976. "A survey of maintenance models: The control and surveillance of deteriorating systems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 23(3), pages 353-388, September.
    6. S. P. Sethi & T. E. Morton, 1972. "A mixed optimization technique for the generalized machine replacement problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 19(3), pages 471-481, September.
    7. Tzvi Goldstein & Shaul P. Ladany & Abraham Mehrez, 1988. "A discounted machine‐replacement model with an expected future technological breakthrough," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(2), pages 209-220, April.
    8. C. Bes & S. P. Sethi, 1988. "Concepts of Forecast and Decision Horizons: Applications to Dynamic Stochastic Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 295-310, May.
    9. Suresh Chand & Suresh P. Sethi & Jean-Marie Proth, 1990. "Existence of Forecast Horizons in Undiscounted Discrete-Time Lot Size Models," Operations Research, INFORMS, vol. 38(5), pages 884-892, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Bensoussan & Q. Feng & S. P. Sethi, 2022. "Integrating equipment investment strategy with maintenance operations under uncertain failures," Annals of Operations Research, Springer, vol. 317(2), pages 353-386, October.
    2. Suresh Chand & Tim McClurg & Jim Ward, 1993. "A single‐machine replacement model with learning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(2), pages 175-192, March.
    3. Yu. Yatsenko & N. Hritonenko, 2007. "Network economics and optimal replacement of age-structured IT capital," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 65(3), pages 483-497, June.
    4. Yatsenko, Yuri & Hritonenko, Natali, 2008. "Properties of optimal service life under technological change," International Journal of Production Economics, Elsevier, vol. 114(1), pages 230-238, July.
    5. Ali Dogramaci & Nelson M. Fraiman, 2004. "Replacement Decisions with Maintenance Under Uncertainty: An Imbedded Optimal Control Model," Operations Research, INFORMS, vol. 52(5), pages 785-794, October.
    6. Su, Chao-Ton & Wu, Sung-Chi & Chang, Cheng-Chang, 2000. "Multiaction maintenance subject to action-dependent risk and stochastic failure," European Journal of Operational Research, Elsevier, vol. 125(1), pages 133-148, August.
    7. Mellal, Mohamed Arezki, 2020. "Obsolescence – A review of the literature," Technology in Society, Elsevier, vol. 63(C).
    8. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wallace J. Hopp & Suresh K. Nair, 1991. "Timing replacement decisions under discontinuous technological change," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 203-220, April.
    2. Awi Federgruen & Michal Tzur, 1996. "Detection of minimal forecast horizons in dynamic programs with multiple indicators of the future," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 169-189, March.
    3. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.
    4. Milind Dawande & Srinagesh Gavirneni & Sanjeewa Naranpanawe & Suresh Sethi, 2007. "Forecast Horizons for a Class of Dynamic Lot-Size Problems Under Discrete Future Demand," Operations Research, INFORMS, vol. 55(4), pages 688-702, August.
    5. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.
    6. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.
    7. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    8. Fuying Jing & Zirui Lan, 2017. "Forecast horizon of multi-item dynamic lot size model with perishable inventory," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-15, November.
    9. A. Bensoussan & Q. Feng & S. P. Sethi, 2022. "Integrating equipment investment strategy with maintenance operations under uncertain failures," Annals of Operations Research, Springer, vol. 317(2), pages 353-386, October.
    10. Ali Dogramaci & Nelson M. Fraiman, 2004. "Replacement Decisions with Maintenance Under Uncertainty: An Imbedded Optimal Control Model," Operations Research, INFORMS, vol. 52(5), pages 785-794, October.
    11. Martel, Alain & Gascon, Andre, 1998. "Dynamic lot-sizing with price changes and price-dependent holding costs," European Journal of Operational Research, Elsevier, vol. 111(1), pages 114-128, November.
    12. Sahin, Funda & Powell Robinson, E. & Gao, Li-Lian, 2008. "Master production scheduling policy and rolling schedules in a two-stage make-to-order supply chain," International Journal of Production Economics, Elsevier, vol. 115(2), pages 528-541, October.
    13. Aarts, E. H. L. & Reijnhoudt, M. F. & Stehouwer, H. P. & Wessels, J., 2000. "A novel decomposition approach for on-line lot-sizing," European Journal of Operational Research, Elsevier, vol. 122(2), pages 339-353, April.
    14. Sandun C. Perera & Suresh P. Sethi, 2023. "A survey of stochastic inventory models with fixed costs: Optimality of (s, S) and (s, S)‐type policies—Discrete‐time case," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 131-153, January.
    15. Milind Dawande & Srinagesh Gavirneni & Yinping Mu & Suresh Sethi & Chelliah Sriskandarajah, 2010. "On the Interaction Between Demand Substitution and Production Changeovers," Manufacturing & Service Operations Management, INFORMS, vol. 12(4), pages 682-691, September.
    16. Dawande, Milind & Gavirneni, Srinagesh & Naranpanawe, Sanjeewa & Sethi, Suresh P., 2009. "Discrete forecast horizons for two-product variants of the dynamic lot-size problem," International Journal of Production Economics, Elsevier, vol. 120(2), pages 430-436, August.
    17. Sampath Rajagopalan & Medini R. Singh & Thomas E. Morton, 1998. "Capacity Expansion and Replacement in Growing Markets with Uncertain Technological Breakthroughs," Management Science, INFORMS, vol. 44(1), pages 12-30, January.
    18. Kimms, Alf, 1996. "Stability measures for rolling schedules with applications to capacity expansion planning, master production scheduling, and lot sizing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 418, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Tzvi Goldstein & Shaul P. Ladany & Abraham Mehrez, 1988. "A discounted machine‐replacement model with an expected future technological breakthrough," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(2), pages 209-220, April.
    20. Michael Bastian, 1992. "A perfect lot‐tree procedure for the discounted dynamic lot‐size problem with speculation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(5), pages 651-668, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:39:y:1992:i:4:p:487-507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.