Advanced Search
MyIDEAS: Login to save this article or follow this journal

Comparing alternative models: log vs Cox proportional hazard?

Contents:

Author Info

  • Anirban Basu

    (Harris School of Public Policy, The University of Chicago, Chicago, USA)

  • Willard G. Manning
  • John Mullahy

Abstract

Health economists often use log models (based on OLS or generalized linear models) to deal with skewed outcomes such as those found in health expenditures and inpatient length of stay. Some recent studies have employed Cox proportional hazard regression as a less parametric alternative to OLS and GLM models, even when there was no need to correct for censoring. This study examines how well the alternative estimators behave econometrically in terms of bias when the data are skewed to the right. Specifically we provide evidence on the performance of the Cox model under a variety of data generating mechanisms and compare it to the estimators studied recently in Manning and Mullahy (2001). No single alternative is best under all of the conditions examined here. However, the gamma regression model with a log link seems to be more robust to alternative data generating mechanisms than either OLS on ln(y) or Cox proportional hazards regression. We find that the proportional hazard assumption is an essential requirement to obtain consistent estimate of the E(y∣x) using the Cox model. Copyright © 2004 John Wiley & Sons, Ltd.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1002/hec.852
File Function: Link to full text; subscription required
Download Restriction: no

Bibliographic Info

Article provided by John Wiley & Sons, Ltd. in its journal Health Economics.

Volume (Year): 13 (2004)
Issue (Month): 8 ()
Pages: 749-765

as in new window
Handle: RePEc:wly:hlthec:v:13:y:2004:i:8:p:749-765

Contact details of provider:
Web page: http://www3.interscience.wiley.com/cgi-bin/jhome/5749

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Mullahy, John, 1998. "Much ado about two: reconsidering retransformation and the two-part model in health econometrics," Journal of Health Economics, Elsevier, vol. 17(3), pages 247-281, June.
  2. Etzioni, Ruth D. & Feuer, Eric J. & Sullivan, Sean D. & Lin, Danyu & Hu, Chengcheng & Ramsey, Scott D., 1999. "On the use of survival analysis techniques to estimate medical care costs," Journal of Health Economics, Elsevier, vol. 18(3), pages 365-380, June.
  3. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Barbos, Andrei & Deng, Yi, 2012. "The Impact of a Public Option in the Health Insurance Market," MPRA Paper 40849, University Library of Munich, Germany.
  2. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: An application in breast cancer patients," Health, Econometrics and Data Group (HEDG) Working Papers 07/07, HEDG, c/o Department of Economics, University of York.
  3. Willard G. Manning & Anirban Basu & John Mullahy, 2003. "Generalized Modeling Approaches to Risk Adjustment of Skewed Outcomes Data," Working Papers 0313, Harris School of Public Policy Studies, University of Chicago.
  4. Law, Michael R. & Grépin, Karen A., 2010. "Is newer always better? Re-evaluating the benefits of newer pharmaceuticals," Journal of Health Economics, Elsevier, vol. 29(5), pages 743-750, September.
  5. Anirban Basu & James J. Heckman & Salvador Navarro-Lozano & Sergio Urzua, 2007. "Use of instrumental variables in the presence of heterogeneity and self-selection: an application to treatments of breast cancer patients," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1133-1157.
  6. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
  7. Anirban Basu & Bhakti V. Arondekar & Paul J. Rathouz, 2006. "Scale of interest versus scale of estimation: comparing alternative estimators for the incremental costs of a comorbidity," Health Economics, John Wiley & Sons, Ltd., vol. 15(10), pages 1091-1107.
  8. Stargardt, Tom & Schreyögg, Jonas, 2012. "A framework to evaluate the effects of small area variations in healthcare infrastructure on diagnostics and patient outcomes of rare diseases based on administrative data," Health Policy, Elsevier, vol. 105(2), pages 110-118.
  9. Manos Matsaganis & Theodore Mitrakos & Panos Tsakloglou, 2008. "Modelling Household Expenditure on Health Care in Greece," Working Papers 68, Bank of Greece.
  10. Thompson, Simon G. & Nixon, Richard M. & Grieve, Richard, 2006. "Addressing the issues that arise in analysing multicentre cost data, with application to a multinational study," Journal of Health Economics, Elsevier, vol. 25(6), pages 1015-1028, November.
  11. Manos Matsaganis & Theodore Mitrakos & Panos Tsakloglou, 2009. "Modelling health expenditure at the household level in Greece," The European Journal of Health Economics, Springer, vol. 10(3), pages 329-336, July.
  12. Basu A & Manning WG, 2009. "Estimating Lifetime or Episode-of-illness Costs," Health, Econometrics and Data Group (HEDG) Working Papers 09/12, HEDG, c/o Department of Economics, University of York.
  13. Jones, A. & Lomas, J. & Rice, N., 2011. "Applying Beta-type Size Distributions to Healthcare Cost Regressions," Health, Econometrics and Data Group (HEDG) Working Papers 11/31, HEDG, c/o Department of Economics, University of York.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:13:y:2004:i:8:p:749-765. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.