IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v79y2003i3p342-354.html
   My bibliography  Save this article

Measuring the Opportunity Cost of Carbon Sequestration in Tropical Agriculture

Author

Listed:
  • Charles A. Zelek
  • Gerald E. Shively

Abstract

We present a method for measuring the opportunity cost of sequestering carbon on tropical farms. We derive the rates of carbon sequestration for timber and agroforestry systems and compute incentive compatible compensating payment schedules for farmers who sequester carbon. The method is applied to data for an agricultural watershed in the Philippines. Area- and land quality-adjusted total costs are estimated. The present value of the opportunity cost of carbon storage via land modification falls between $3.30 and $62.50 per ton. Carbon storage through agroforestry is found to be less costly than via a pure tree-based system.

Suggested Citation

  • Charles A. Zelek & Gerald E. Shively, 2003. "Measuring the Opportunity Cost of Carbon Sequestration in Tropical Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 342-354.
  • Handle: RePEc:uwp:landec:v:79:y:2003:i:3:p:342-354
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/79/3/342
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Darius M. Adams & Ralph J. Alig & DBruce A. McCarl & John M. Callaway & Steven M. Winnett, 1999. "Minimum Cost Strategies for Sequestering Carbon in Forests," Land Economics, University of Wisconsin Press, vol. 75(3), pages 360-374.
    2. Zeuli, Kimberly A. & Skees, Jerry R., 2000. "Will Southern Agriculture Play a Role in a Carbon Market?," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 32(2), pages 235-248, August.
    3. Zeuli, Kimberly A. & Skees, Jerry R., 2000. "Will Southern Agriculture Play A Role In A Carbon Market?," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 32(2), pages 1-14, August.
    4. Nissen, T. M. & Midmore, D. J. & Keeler, A. G., 2001. "Biophysical and economic tradeoffs of intercropping timber with food crops in the Philippine uplands," Agricultural Systems, Elsevier, vol. 67(1), pages 49-69, January.
    5. Robert N. Stavins, 1999. "The Costs of Carbon Sequestration: A Revealed-Preference Approach," American Economic Review, American Economic Association, vol. 89(4), pages 994-1009, September.
    6. Peter J. Parks & Ian W. Hardie, 1995. "Least-Cost Forest Carbon Reserves: Cost-Effective Subsidies to Convert Marginal Agricultural Land to Forests," Land Economics, University of Wisconsin Press, vol. 71(1), pages 122-136.
    7. Shively, Gerald & Zelek, Charles, 2002. "Linking Economic Policy and Environmental Outcomes at a Watershed Scale," Philippine Journal of Development PJD 2002 Vol. XXIX No. 1-, Philippine Institute for Development Studies.
    8. S. Rama Chandra Reddy & Colin Price, 1999. "Carbon Sequestration and Conservation of Tropical Forests Under Uncertainty," Journal of Agricultural Economics, Wiley Blackwell, vol. 50(1), pages 17-35, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Cornelis van Kooten & Susanna Laaksonen-Craig & Yichuan Wang, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 2007-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    2. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    3. Jean-Sauveur Ay & Jean-Marc Brayer & Jean Cavailhès & Pierre Curmi & Mohamed Hilal & Marjorie Ubertosi, 2012. "La valeur des attributs naturels des terres agricoles de Côte-d'Or," INRA UMR CESAER Working Papers 2012/1, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    4. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    5. Hitayezu, Patrick & Wale, Edilegnaw & Ortmann, Gerald, 2015. "Assessing Agricultural Land Use Change in the Midlands Region of KwaZulu-Natal, South Africa: Application of Mixed-Multinomial Logit," 2015 Conference, August 9-14, 2015, Milan, Italy 211736, International Association of Agricultural Economists.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Martina, 2003. "The Role of Forestry Sinks in the CDM - Analysing the Effects of Policy Decisions on the Carbon Market," Discussion Paper Series 26293, Hamburg Institute of International Economics.
    2. Latta, Gregory & Adams, Darius M. & Alig, Ralph J. & White, Eric, 2011. "Simulated effects of mandatory versus voluntary participation in private forest carbon offset markets in the United States," Journal of Forest Economics, Elsevier, vol. 17(2), pages 127-141, April.
    3. Feng, Hongli, 2005. "The dynamics of carbon sequestration and alternative carbon accounting, with an application to the upper Mississippi River Basin," Ecological Economics, Elsevier, vol. 54(1), pages 23-35, July.
    4. Matthews, Stephen & O'Connor, Raymond & Plantinga, Andrew J., 2002. "Quantifying the impacts on biodiversity of policies for carbon sequestration in forests," Ecological Economics, Elsevier, vol. 40(1), pages 71-87, January.
    5. van Kooten, G. Cornelis & Laaksonen-Craig, Susanna & Wang, Yichuan, 2007. "Costs of Creating Carbon Offset Credits via Forestry Activities: A Meta-Regression Analysis," Working Papers 37039, University of Victoria, Resource Economics and Policy.
    6. Choi, Suk-Won & Sohngen, Brent & Alig, Ralph J., 2001. "Land-Use Change And Carbon Sequestration In The Forests Of Ohio, Indiana, And Illinois: Sensitivity To Population And Model Choice," 2001 Annual meeting, August 5-8, Chicago, IL 20564, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    8. Hennessy, David A. & Saak, Alexander E., 2003. "State-Contingent Demand for Herbicide-Tolerance Seed Trait," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(1), pages 1-14, April.
    9. Ovchinnikova, Natalia & Lynne, Gary D. & Sautter, John & Kruse, Colby, 2006. "What motivates farmers to sequester carbon: an empirical investigation," 2006 Annual meeting, July 23-26, Long Beach, CA 21288, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. van Kooten, G. Cornelis & Eagle, Alison J. & Manley, James G. & Smolak, Tara M., 2004. "How Costly Are Carbon Offsets? A Meta-Analysis Of Carbon Forest Sinks," Working Papers 18166, University of Victoria, Resource Economics and Policy.
    11. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    12. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    13. Lubowski, Ruben N. & Plantinga, Andrew J. & Stavins, Robert N., 2006. "Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 135-152, March.
    14. Kim, Taeyoung & Langpap, Christian, 2016. "Agricultural landowners’ response to incentives for afforestation," Resource and Energy Economics, Elsevier, vol. 43(C), pages 93-111.
    15. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    16. Ribaudo, Marc & Greene, Catherine & Hansen, LeRoy & Hellerstein, Daniel, 2010. "Ecosystem services from agriculture: Steps for expanding markets," Ecological Economics, Elsevier, vol. 69(11), pages 2085-2092, September.
    17. Herath, N. & Tyner, W.E., 2019. "Intended and unintended consequences of US renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. HUBERT Marie-Hélène & MOREAUX Michel, 2007. "The challenge of meeting the future food needs," LERNA Working Papers 07.17.238, LERNA, University of Toulouse.
    19. Kim, Man-Keun & McCarl, Bruce A. & Murray, Brian C., 2008. "Permanence discounting for land-based carbon sequestration," Ecological Economics, Elsevier, vol. 64(4), pages 763-769, February.
    20. Canales, Elizabeth & Bergtold, Jason S. & Williams, Jeffery & Peterson, Jeffrey, 2015. "Estimating farmers’ risk attitudes and risk premiums for the adoption of conservation practices under different contractual arrangements: A stated choice experiment," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205640, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns
    • O20 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:79:y:2003:i:3:p:342-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.