Advanced Search
MyIDEAS: Login to save this article or follow this journal

Application of genetics algorithms for estimating the parameters of a Cox regression model

Contents:

Author Info

  • Douglas Rivas

    ()
    (Universidad de Los Andes. Departamento de Estadística.)

  • José Luciano Maldonado

    ()
    (Universidad de Los Andes. Instituto de Estadística Aplicada y Computación.)

  • Rafael Borges

    ()
    (Universidad de Los Andes. Departamento de Estadística.)

  • Gerardo Colmenares

    ()
    (Universidad de Los Andes. Instituto de Investigaciones Económicas y Sociales (IIES).)

Registered author(s):

    Abstract

    This paper, involved in the area of evolutive computing, presents the development of a Genetic Algorithm in finding the optimal parameters of a Cox Regression Model for patients of the Service of Peritoneal Dialysis of the “Hospital Clínico Universitario de Caracas”between 1980 and 2002, performed by Borges (2002, 2005). The technique of the genetic algorithms is used as a method for finding a better estimation of the parameters of the Cox Model than the obtained by the classical optimization methods. The algorithm was completed programmed in the language C++, using a modular programming design, considering every element of the genetic algorithms. The main characteristics of the algorithm are: a) the initial population, of 10 subjects, is generated randomly between a range of values, this range was obtained after several essays, b) the adjustment function was based in the Akaike Information Criteria (AIC), c) the selection of the subjects to be reproduced was done by tournament, d) the multipoint operator for the crossing and, the mutation was done to all the genes of one part of the chromosomes of the population. The developed algorithm was useful to obtain the estimation of the Cox Regression Model and with better AIC values than the obtained by the classical methods.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: ftp://iies.faces.ula.ve/Pdf/Revista22/Rev22Rivas.pdf
    Download Restriction: no

    Bibliographic Info

    Article provided by Instituto de Investigaciones Económicas y Sociales (IIES). Facultad de Ciencias Económicas y Sociales. Universidad de Los Andes. Mérida, Venezuela in its journal Economia.

    Volume (Year): 31 (2006)
    Issue (Month): 22 (january-december)
    Pages: 57-74

    as in new window
    Handle: RePEc:ula:econom:v:31:y:2006:i:22:p:57-74

    Contact details of provider:
    Postal: Facultad de Ciencias Económicas y Sociales. Instituto de Investigaciones Económicas y Sociales. Campus Universitario Liria, Edificio G, Tercer Nivel. Mérida 5101, Estado Mérida, Venezuela
    Phone: +58 74 401111 ext. 1081
    Fax: +58 74 401120
    Email:
    Web page: http://iies.faces.ula.ve/
    More information through EDIRC

    Related research

    Keywords: Genetic Algorithms; Cox Regression Model; Akaike Information Criteria (AIC); Survival Analysis.;

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:ula:econom:v:31:y:2006:i:22:p:57-74. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alexis Vásquez).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.