Advanced Search
MyIDEAS: Login

Predicting U.S. Recessions with Dynamic Binary Response Models

Contents:

Author Info

  • Heikki Kauppi

    (Department of Economics, University of Turku)

  • Pentti Saikkonen

    (Department of Mathematics and Statistics, University of Helsinki)

Abstract

We develop dynamic binary probit models and apply them for predicting U.S. recessions using the interest rate spread as the driving predictor. The new models use lags of the binary response (a recession dummy) to forecast its future values and allow for the potential forecast power of lags of the underlying conditional probability. We show how multiperiod-ahead forecasts are computed iteratively using the same one-period-ahead model. Iterated forecasts that apply specific lags supported by statistical model selection procedures turn out to be more accurate than previously used direct forecasts based on horizon-specific model specifications. Copyright by the President and Fellows of Harvard College and the Massachusetts Institute of Technology.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/rest.90.4.777
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by MIT Press in its journal The Review of Economics and Statistics.

Volume (Year): 90 (2008)
Issue (Month): 4 (November)
Pages: 777-791

as in new window
Handle: RePEc:tpr:restat:v:90:y:2008:i:4:p:777-791

Contact details of provider:
Web page: http://mitpress.mit.edu/journals/

Order Information:
Web: http://mitpress.mit.edu/journal-home.tcl?issn=00346535

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:90:y:2008:i:4:p:777-791. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Karie Kirkpatrick).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.