Advanced Search
MyIDEAS: Login

On the use of the truncated Gompertz distribution and other models to represent the parity progression functions of high fertility populations

Contents:

Author Info

  • J. H. Pollard
  • E. J. Valkovics
Registered author(s):

    Abstract

    The Gompertz distribution, developed from the mortality “law”; long used by actuaries and demographers promises to be a useful distribution for many other demographic purposes as well. The continuous distribution can also be adapted to represent discrete data commonly encountered in demographic work, and maximum likelihood estimates of the two parameters are easily calculated using formulae developed in this paper, whether those data be continuous or discrete, truncated below or provided with observations in a final open-ended interval. The distribution is unimodel. The use of the truncated form of the distribution, however, allows the researcher to fit it to a wider range of observed distributions, including many for which the density function is monotonic decreasing. Empirical studies using parity progression data of two high fertility populations indicate that the truncated Gompertz distribution in its discrete form provides a good overall picture of the parity distribution. Interestingly, the simple method of partial sums, commonly employed to fit the Gompertz function, appears to provide parameter estimates which are close to those estimated by maximum likelihood.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/08898489709525438
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Mathematical Population Studies.

    Volume (Year): 6 (1997)
    Issue (Month): 4 ()
    Pages: 291-305

    as in new window
    Handle: RePEc:taf:mpopst:v:6:y:1997:i:4:p:291-305

    Contact details of provider:
    Web page: http://www.tandfonline.com/GMPS20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/GMPS20

    Related research

    Keywords: Gompertz; Partial sum; Parity progression table; Truncated Gompertz distribution;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:mpopst:v:6:y:1997:i:4:p:291-305. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.