Advanced Search
MyIDEAS: Login

Interactions in the Analysis of Variance


Author Info

  • P. L. Davies
Registered author(s):


    The standard model for the analysis of variance is over-parameterized. The resulting identifiability problem is typically solved by placing linear constraints on the parameters. In the case of the interactions, these require that the marginal sums be zero. Although seemingly neutral, these conditions have unintended consequences: the interactions are of necessity connected whether or not this is justified, the minimum number of nonzero interactions is four, and, in particular, it is not possible to have a single interaction in one cell. There is no reason why nature should conform to these constraints. The approach taken in this article is one of sparsity: the linear factor effects are chosen so as to minimize the number of nonzero interactions subject to consistency with the data. The resulting interactions are attached to individual cells making their interpretation easier irrespective of whether they are isolated or form clusters. In general, the calculation of a sparse solution is a difficult combinatorial problem but the special nature of the analysis of variance simplifies matters considerably. In many cases, the sparse L 0 solution coincides with the L 1 solution obtained by minimizing the sum of the absolute residuals and that can be calculated quickly. The identity of the two solutions can be checked either algorithmically or by applying known sufficient conditions for equality.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of the American Statistical Association.

    Volume (Year): 107 (2012)
    Issue (Month): 500 (December)
    Pages: 1502-1509

    as in new window
    Handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1502-1509

    Contact details of provider:
    Web page:

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.



    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:500:p:1502-1509. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.