IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i4p604-626.html
   My bibliography  Save this article

Spatial effects in dynamic conditional correlations

Author

Listed:
  • Edoardo Otranto
  • Massimo Mucciardi
  • Pietro Bertuccelli

Abstract

The recent literature on time series has developed a lot of models for the analysis of the dynamic conditional correlation, involving the same variable observed in different locations; very often, in this framework, the consideration of the spatial interactions is omitted. We propose to extend a time-varying conditional correlation model (following an autoregressive moving average dynamics) to include the spatial effects, with a specification depending on the local spatial interactions. The spatial part is based on a fixed symmetric weight matrix, called Gaussian kernel matrix, but its effect will vary along the time depending on the degree of time correlation in a certain period. We show the theoretical aspects, with the support of simulation experiments, and apply this methodology to two space--time data sets, in a demographic and a financial framework, respectively.

Suggested Citation

  • Edoardo Otranto & Massimo Mucciardi & Pietro Bertuccelli, 2016. "Spatial effects in dynamic conditional correlations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 604-626, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:604-626
    DOI: 10.1080/02664763.2015.1071343
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1071343
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1071343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pace, R. Kelley & Barry, Ronald & Gilley, Otis W. & Sirmans, C. F., 2000. "A method for spatial-temporal forecasting with an application to real estate prices," International Journal of Forecasting, Elsevier, vol. 16(2), pages 229-246.
    2. repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
    3. Bayoumi, Tamim & Fazio, Giorgio & Kumar, Manmohan & MacDonald, Ronald, 2007. "Fatal attraction: Using distance to measure contagion in good times as well as bad," Review of Financial Economics, Elsevier, vol. 16(3), pages 259-273.
    4. Pace, R Kelley & Barry, Ronald & Clapp, John M. & Rodriquez, Mauricio, 1998. "Spatiotemporal Autoregressive Models of Neighborhood Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 15-33, July.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Otranto, Edoardo, 2008. "Clustering heteroskedastic time series by model-based procedures," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4685-4698, June.
    7. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    8. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    9. Mobley, Lee R., 2003. "Estimating hospital market pricing: an equilibrium approach using spatial econometrics," Regional Science and Urban Economics, Elsevier, vol. 33(4), pages 489-516, July.
    10. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    11. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    12. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
    13. Serdar Yilmaz & Kingley E. Haynes & Mustafa Dinc, 2002. "Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 339-360, May.
    14. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    15. BAUWENS, Luc & otranto, EDOARDO, 2013. "Modeling the dependence of conditional correlations on volatility," LIDAM Discussion Papers CORE 2013014, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Massimo Mucciardi & Pietro Bertuccelli, 2012. "The impact of the weight matrix on the local indicators of spatial association: an application to per-capita value added in Italy," International Journal of Trade and Global Markets, Inderscience Enterprises Ltd, vol. 5(2), pages 133-141.
    17. Anselin, Luc, 1988. "A test for spatial autocorrelation in seemingly unrelated regressions," Economics Letters, Elsevier, vol. 28(4), pages 335-341.
    18. Kawee Numpacharoen & Amporn Atsawarungruangkit, 2012. "Generating Correlation Matrices Based on the Boundaries of Their Coefficients," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Mucciardi & E. Otranto, 2016. "A Flexible Specification of Space–Time AutoRegressive Models," Working Paper CRENoS 201608, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    2. Gu, Huaying & Liu, Zhixue & Weng, Yingliang, 2017. "Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 460-472.
    3. Edoardo Otranto & Massimo Mucciardi, 2019. "Clustering space-time series: FSTAR as a flexible STAR approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 175-199, March.
    4. E. Otranto & M. Mucciardi, 2017. "Clustering Space-Time Series: A Flexible STAR Approach," Working Paper CRENoS 201707, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otranto, Edoardo, 2010. "Identifying financial time series with similar dynamic conditional correlation," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 1-15, January.
    2. Annastiina Silvennoinen & Timo Teräsvirta, 2009. "Modeling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 373-411, Fall.
    3. Massimiliano Caporin & Michael McAleer, 2011. "Thresholds, news impact surfaces and dynamic asymmetric multivariate GARCH," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(2), pages 125-163, May.
    4. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    5. Nguyen, Hoang & Virbickaitė, Audronė, 2023. "Modeling stock-oil co-dependence with Dynamic Stochastic MIDAS Copula models," Energy Economics, Elsevier, vol. 124(C).
    6. Marçal, Emerson Fernandes & Pereira, Pedro L. Valls, 2008. "Testing the Hypothesis of Contagion Using Multivariate Volatility Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 28(2), November.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    8. Charlotte Christiansen, 2010. "Decomposing European bond and equity volatility," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(2), pages 105-122.
    9. Massimiliano Agovino & Antonio Garofalo, 2013. "Dipendenza spaziale contemporanea e non contemporanea nei tassi di disoccupazione: un tentativo di analisi empirica dei dati provinciali italiani," RIVISTA DI ECONOMIA E STATISTICA DEL TERRITORIO, FrancoAngeli Editore, vol. 2013(3), pages 45-82.
    10. Herwartz, Helmut & Golosnoy, Vasyl, 2007. "Semiparametric Approaches to the Prediction of Conditional Correlation Matrices in Finance," Economics Working Papers 2007-23, Christian-Albrechts-University of Kiel, Department of Economics.
    11. Marçal, Emerson F. & Valls Pereira, Pedro L., 2008. "Testando A Hipótese De Contágio A Partir De Modelos Multivariados De Volatilidade [Testing the contagion hypotheses using multivariate volatility models]," MPRA Paper 10356, University Library of Munich, Germany.
    12. Das, Mahamitra & Kundu, Srikanta & Sarkar, Nityananda, 2019. "Mean and Volatility Spillovers between REIT and Stocks Returns A STVAR-BTGARCH-M Model," MPRA Paper 94707, University Library of Munich, Germany.
    13. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    14. Becker, R. & Clements, A.E. & Doolan, M.B. & Hurn, A.S., 2015. "Selecting volatility forecasting models for portfolio allocation purposes," International Journal of Forecasting, Elsevier, vol. 31(3), pages 849-861.
    15. Erik Kole & Thijs Markwat & Anne Opschoor & Dick van Dijk, 2017. "Forecasting Value-at-Risk under Temporal and Portfolio Aggregation," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 649-677.
    16. Carlo Drago & Andrea Scozzari, 2022. "Evaluating conditional covariance estimates via a new targeting approach and a networks-based analysis," Papers 2202.02197, arXiv.org.
    17. Cristina Amado & Annastiina Silvennoinen & Timo Teräsvirta, 2018. "Models with Multiplicative Decomposition of Conditional Variances and Correlations," CREATES Research Papers 2018-14, Department of Economics and Business Economics, Aarhus University.
    18. Yegnanew A. Shiferaw, 2019. "Multivariate Analysis of East African Currency Exchange Rate Dynamics," Annals of Economics and Finance, Society for AEF, vol. 20(2), pages 587-610, November.
    19. R. Khalfaoui & M. Boutahar, 2012. "Portfolio Risk Evaluation: An Approach Based on Dynamic Conditional Correlations Models and Wavelet Multi-Resolution Analysis," Working Papers halshs-00793068, HAL.
    20. Annastiina Silvennoinen & Timo Teräsvirta, 2017. "Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model," CREATES Research Papers 2017-28, Department of Economics and Business Economics, Aarhus University.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • J13 - Labor and Demographic Economics - - Demographic Economics - - - Fertility; Family Planning; Child Care; Children; Youth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:4:p:604-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.