IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i2p423-438.html
   My bibliography  Save this article

A Bayesian approach for locating change points in a compound Poisson process with application to detecting DNA copy number variations

Author

Listed:
  • Paul J. Plummer
  • Jie Chen

Abstract

This work examines the problem of locating changes in the distribution of a Compound Poisson Process where the variables being summed are iid normal and the number of variable follows the Poisson distribution. A Bayesian approach is developed to identify the location of significant changes in any of the parameters of the distribution, and a sliding window algorithm is used to identify multiple change points. These results can be applied in any field of study where an interest in locating changes not only in the parameter of a normally distributed data set but also in the rate of their occurrence. It has direct application to the study of DNA copy number variations in cancer research, where it is known that the distances between the genes can affect their intensity level.

Suggested Citation

  • Paul J. Plummer & Jie Chen, 2014. "A Bayesian approach for locating change points in a compound Poisson process with application to detecting DNA copy number variations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 423-438, February.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:423-438
    DOI: 10.1080/02664763.2013.840272
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.840272
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.840272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    2. Jie Chen & Ayten Yiğiter & Kuang-Chao Chang, 2011. "A Bayesian approach to inference about a change point model with application to DNA copy number experimental data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1899-1913, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Narayanaswamy Balakrishnan & Laurent Bordes & Christian Paroissin & Jean-Christophe Turlot, 2016. "Single change-point detection methods for small lifetime samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 531-551, July.
    2. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    3. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    4. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    5. Brennen T. Fagan & Marina I. Knight & Niall J. MacKay & A. Jamie Wood, 2020. "Change point analysis of historical battle deaths," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 909-933, June.
    6. Li, Boyan & Diao, Xundi, 2023. "Structural break in different stock index markets in China," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    7. Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
    8. Sandip Sinharay, 2017. "Some Remarks on Applications of Tests for Detecting A Change Point to Psychometric Problems," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1149-1161, December.
    9. Minya Xu & Ping-Shou Zhong & Wei Wang, 2016. "Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 213-226, April.
    10. Jon Vilasuso, 1996. "Changes in the duration of economic expansions and contractions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 3(12), pages 803-806.
    11. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    12. Watson, G. S., 1995. "Detecting a change in the intercept in multiple regression," Statistics & Probability Letters, Elsevier, vol. 23(1), pages 69-72, April.
    13. Bian, Zilin & Zuo, Fan & Gao, Jingqin & Chen, Yanyan & Pavuluri Venkata, Sai Sarath Chandra & Duran Bernardes, Suzana & Ozbay, Kaan & Ban, Xuegang (Jeff) & Wang, Jingxing, 2021. "Time lag effects of COVID-19 policies on transportation systems: A comparative study of New York City and Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 269-283.
    14. Xia Cai & Khamis Khalid Said & Wei Ning, 2016. "Change-point analysis with bathtub shape for the exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2740-2750, November.
    15. Bill Russell & Dooruj Rambaccussing, 2016. "Breaks and the Statistical Process of Inflation: The Case of the ‘Modern’ Phillips Curve," Dundee Discussion Papers in Economics 294, Economic Studies, University of Dundee.
    16. Pedro André Cerqueira, 2014. "Business Cycle Synchronization and Volatility Shifts," GEMF Working Papers 2014-19, GEMF, Faculty of Economics, University of Coimbra.
    17. Cheng, Tsung-Lin, 2009. "An efficient algorithm for estimating a change-point," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 559-565, March.
    18. Xian F Mallory & Mohammadamin Edrisi & Nicholas Navin & Luay Nakhleh, 2020. "Assessing the performance of methods for copy number aberration detection from single-cell DNA sequencing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-24, July.
    19. S. G. Li & Y. Q. Zhang & Z. X. Yu & F. Liu, 2021. "Economical user-generated content (UGC) marketing for online stores based on a fine-grained joint model of the consumer purchase decision process," Electronic Commerce Research, Springer, vol. 21(4), pages 1083-1112, December.
    20. Ji Tieming & Chen Jie, 2015. "Modeling the next generation sequencing read count data for DNA copy number variant study," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(4), pages 361-374, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:423-438. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.