Advanced Search
MyIDEAS: Login to save this article or follow this journal

Robust Detection of Multiple Outliers in Grouped Multivariate Data

Contents:

Author Info

  • Chrys Caroni
  • Nedret Billor
Registered author(s):

    Abstract

    Many methods have been developed for detecting multiple outliers in a single multivariate sample, but very few for the case where there may be groups in the data. We propose a method of simultaneously determining groups (as in cluster analysis) and detecting outliers, which are points that are distant from every group. Our method is an adaptation of the BACON algorithm proposed by Billor, Hadi and Velleman for the robust detection of multiple outliers in a single group of multivariate data. There are two versions of our method, depending on whether or not the groups can be assumed to have equal covariance matrices. The effectiveness of the method is illustrated by its application to two real data sets and further shown by a simulation study for different sample sizes and dimensions for 2 and 3 groups, with and without planted outliers in the data. When the number of groups is not known in advance, the algorithm could be used as a robust method of cluster analysis, by running it for various numbers of groups and choosing the best solution.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701592877
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

    Volume (Year): 34 (2007)
    Issue (Month): 10 ()
    Pages: 1241-1250

    as in new window
    Handle: RePEc:taf:japsta:v:34:y:2007:i:10:p:1241-1250

    Contact details of provider:
    Web page: http://www.tandfonline.com/CJAS20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/CJAS20

    Related research

    Keywords: Multivariate data; outliers; robust methods; BACON; cluster analysis;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:10:p:1241-1250. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.