Advanced Search
MyIDEAS: Login to save this article or follow this journal

Length-bias Correction in Transformation Models with Supplementary Data

Contents:

Author Info

  • Youngki Shin

Abstract

In this article, I propose an inferential procedure of monotone transformation models with random truncation points, which may not be observable. This class includes length-biased samples that are common in duration analysis. The proposed estimator can be applied to more general situations than existing estimators, since it imposes restrictions on neither the transformation function nor the error terms. Furthermore, it does not require observed truncation points either. It is sufficient for point identification to know the cdf of the truncation variable, which can be estimated from supplementary data that are easily found in applications. The estimator converges to a normal distribution at the rate of [image omitted] and Monte Carlo simulations confirm its robustness to error distributions in finite samples. For an empirical illustration, I estimate the effect of unemployment insurance benefits on unemployment duration, using length-biased microdata and supplementary macrodata.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930903039246
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

Volume (Year): 28 (2009)
Issue (Month): 6 ()
Pages: 658-681

as in new window
Handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:658-681

Contact details of provider:
Web page: http://www.tandfonline.com/LECR20

Order Information:
Web: http://www.tandfonline.com/pricing/journal/LECR20

Related research

Keywords: Duration models; Length-biased data; Rank estimation; Random truncation; Transformation model;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:28:y:2009:i:6:p:658-681. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.