Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimation, Learning and Parameters of Interest in a Multiple Outcome Selection Model

Contents:

Author Info

  • Justin Tobias
Registered author(s):

    Abstract

    We describe estimation, learning, and prediction in a treatment-response model with two outcomes. The introduction of potential outcomes in this model introduces four cross-regime correlation parameters that are not contained in the likelihood for the observed data and thus are not identified. Despite this inescapable identification problem, we build upon the results of Koop and Poirier (1997) to describe how learning takes place about the four nonidentified correlations through the imposed positive definiteness of the covariance matrix. We then derive bivariate distributions associated with commonly estimated “treatment parameters” (including the Average Treatment Effect and effect of Treatment on the Treated), and use the learning that takes place about the nonidentified correlations to calculate these densities. We illustrate our points in several generated data experiments and apply our methods to estimate the joint impact of child labor on achievement scores in language and mathematics.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930500545421
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Taylor & Francis Journals in its journal Econometric Reviews.

    Volume (Year): 25 (2006)
    Issue (Month): 1 ()
    Pages: 1-40

    as in new window
    Handle: RePEc:taf:emetrv:v:25:y:2006:i:1:p:1-40

    Contact details of provider:
    Web page: http://www.tandfonline.com/LECR20

    Order Information:
    Web: http://www.tandfonline.com/pricing/journal/LECR20

    Related research

    Keywords: Bayesian econometrics; Treatment effects;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Djebbari, Habiba & Smith, Jeffrey, 2008. "Heterogeneous impacts in PROGRESA," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 64-80, July.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:25:y:2006:i:1:p:1-40. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.