IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v4y1997i4p181-199.html
   My bibliography  Save this article

Interest rate futures: estimation of volatility parameters in an arbitrage-free framework

Author

Listed:
  • Ramaprasad Bhar
  • Carl Chiarella

Abstract

Hedging interest rate exposures using interest rate futures contracts requires some knowledge of the volatility function of the interest rates. Use of historical data as well as interest rate options like caps and swaptions to estimate this volatility function have been proposed in the literature. In this paper the interest rate futures price is modelled within an arbitrage-free framework for a volatility function which includes a stochastic variable, the instantaneous spot interest rate. The resulting system is expressed in a state space form which is solved using an extended Kalman filter. The residual diagnostics indicate suitability of the model and the bootstrap resampling technique is used to obtain small sample properties of the parameters of the volatility function.

Suggested Citation

  • Ramaprasad Bhar & Carl Chiarella, 1997. "Interest rate futures: estimation of volatility parameters in an arbitrage-free framework," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(4), pages 181-199.
  • Handle: RePEc:taf:apmtfi:v:4:y:1997:i:4:p:181-199
    DOI: 10.1080/135048697334737
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048697334737
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/135048697334737?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(2), pages 231-247, August.
    2. Bhar, R. & Hunt, D.F., 1993. "Predicting the Short Term Forward Interest Rate Structure Using a Parsimonious Model," Papers e9307, Western Sydney - School of Business And Technology.
    3. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    4. Carl Chiarella & Nadima El-Hassan, 1996. "A Preference Free Partial Differential Equation for the Term Structure of Interest Rates," Working Paper Series 63, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    5. Carl Chiarella & Nadima El-Hassan, 1997. "Evaluation of Derivative Security Prices in the Heath-Jarrow-Morton Framework as Path Integrals Using Fast Fourier Transform Techniques," Working Paper Series 72, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    6. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737.
    7. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    8. Brenner, Robin J. & Harjes, Richard H. & Kroner, Kenneth F., 1996. "Another Look at Models of the Short-Term Interest Rate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 85-107, March.
    9. P. E. Kloeden & Eckhard Platen & H. Schurz & M. Sørensen, 1996. "On effects of discretization on estimators of drift parameters for diffusion processes," Published Paper Series 1996-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    10. Bjorn Flesaker, 1993. "Arbitrage free pricing of interest rate futures and forward contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(1), pages 77-91, February.
    11. Andrew Carverhill, 1994. "When Is The Short Rate Markovian?," Mathematical Finance, Wiley Blackwell, vol. 4(4), pages 305-312, October.
    12. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    13. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure1," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72, January.
    14. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    15. Robert Jarrow & Stuart Turnbull, 1994. "Delta, gamma and bucket hedging of interest rate derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 1(1), pages 21-48.
    16. Cox, John C. & Ingersoll, Jonathan Jr. & Ross, Stephen A., 1981. "The relation between forward prices and futures prices," Journal of Financial Economics, Elsevier, vol. 9(4), pages 321-346, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    2. Ram Bhar & Carl Chiarella, 1996. "Construction of Zero-Coupon Yield Curve From Coupon Bond Yield Using Australian Data," Working Paper Series 70, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    3. Andrea Gombani & Wolfgang J. Runggaldier, 2001. "A Filtering Approach To Pricing In Multifactor Term Structure Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 303-320.
    4. Yassine El Qalli, 2010. "Recursive Bayesian Estimation In Forward Price Models Implied By Fair Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 301-333.
    5. Shin Ichi Aihara & Arunabha Bagchi, 2010. "Identification Of Affine Term Structures From Yield Curve Data," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 259-283.
    6. Ram Bhar & Carl Chiarella & Toan Pham, 2000. "Modeling the Currency Forward Risk Premium: Theory and Evidence," Research Paper Series 41, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Gombani, Andrea & Jaschke, Stefan R. & Runggaldier, Wolfgang J., 2005. "A filtered no arbitrage model for term structures from noisy data," Stochastic Processes and their Applications, Elsevier, vol. 115(3), pages 381-400, March.
    8. Ram Bhar & Carl Chiarella & Thuy Duong To, 2002. "A Maximum Likelihood Approach to Estimation of Heath-Jarrow-Morton Models," Research Paper Series 80, Quantitative Finance Research Centre, University of Technology, Sydney.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    2. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    3. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    4. Ram Bhar & Carl Chiarella, 1995. "The Estimation of the Heath-Jarrow-Morton Model by Use of Kalman Filtering Techniques," Working Paper Series 54, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    5. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    6. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    7. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.
    8. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    9. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    10. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    12. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    13. repec:wyi:journl:002108 is not listed on IDEAS
    14. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    15. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    16. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    17. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    18. Carl Chiarella & Nadima El-Hassan, 1999. "Pricing American Interest Rate Options in a Heath-Jarrow-Morton Framework Using Method of Lines," Research Paper Series 12, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    20. Carl Chiarella & Nadima El-Hassan, 1996. "A Preference Free Partial Differential Equation for the Term Structure of Interest Rates," Working Paper Series 63, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    21. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:4:y:1997:i:4:p:181-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.