IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v20y2013i6p599-610.html
   My bibliography  Save this article

Optimal Selling of an Asset with Jumps Under Incomplete Information

Author

Listed:
  • Bing Lu

Abstract

We study the optimal liquidation strategy of an asset with price process satisfying a jump diffusion model with unknown jump intensity. It is assumed that the intensity takes one of two given values, and we have an initial estimate for the probability of both of them. As time goes by, by observing the price fluctuations, we can thus update our beliefs about the probabilities for the intensity distribution. We formulate an optimal stopping problem describing the optimal liquidation problem. It is shown that the optimal strategy is to liquidate the first time the point process falls below (goes above) a certain time-dependent boundary.

Suggested Citation

  • Bing Lu, 2013. "Optimal Selling of an Asset with Jumps Under Incomplete Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 20(6), pages 599-610, December.
  • Handle: RePEc:taf:apmtfi:v:20:y:2013:i:6:p:599-610
    DOI: 10.1080/1350486X.2013.810462
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2013.810462
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2013.810462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiziano De Angelis & Erik Ekstrom & Kristoffer Glover, 2018. "Dynkin games with incomplete and asymmetric information," Papers 1810.07674, arXiv.org, revised Jul 2020.
    2. Glover, Kristoffer, 2022. "Optimally stopping a Brownian bridge with an unknown pinning time: A Bayesian approach," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 919-937.
    3. Erik Ekström & Martin Vannestål, 2019. "American Options And Incomplete Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-14, September.
    4. Juozas Vaicenavicius, 2017. "Asset liquidation under drift uncertainty and regime-switching volatility," Papers 1701.08579, arXiv.org, revised Jan 2019.
    5. Erik Ekstrom & Juozas Vaicenavicius, 2015. "Optimal liquidation of an asset under drift uncertainty," Papers 1509.00686, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:20:y:2013:i:6:p:599-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.