IDEAS home Printed from https://ideas.repec.org/a/taf/apeclt/v15y2008i9p717-722.html
   My bibliography  Save this article

A fuzzy approach to water pricing: the case of Shanghai

Author

Listed:
  • Weide Mao
  • Chien-Ting Lin
  • Chia-Cheng Ho
  • Ching-Chang Wang

Abstract

In this article, we device a methodology to value water using Fuzzy theory that incorporates not only the physical cost of delivery but also the social and sustainable resource costs that water regulators often ignore. Specifically, we include the cost of water quality, cost of water resource, gross domestic product per capita and the household's willingness to pay into our estimation. We demonstrate the approach using the household sector in Shanghai where the residents face potential water shortage and poor water quality. We estimate a theoretical price of 1.82 Chinese Yuan per cubic meter for the average household.

Suggested Citation

  • Weide Mao & Chien-Ting Lin & Chia-Cheng Ho & Ching-Chang Wang, 2008. "A fuzzy approach to water pricing: the case of Shanghai," Applied Economics Letters, Taylor & Francis Journals, vol. 15(9), pages 717-722.
  • Handle: RePEc:taf:apeclt:v:15:y:2008:i:9:p:717-722
    DOI: 10.1080/13504850600748976
    as

    Download full text from publisher

    File URL: http://www.informaworld.com/openurl?genre=article&doi=10.1080/13504850600748976&magic=repec&7C&7C8674ECAB8BB840C6AD35DC6213A474B5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504850600748976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mary E. Renwick & Sandra O. Archibald, 1998. "Demand Side Management Policies for Residential Water Use: Who Bears the Conservation Burden?," Land Economics, University of Wisconsin Press, vol. 74(3), pages 343-359.
    2. Steve H. Hanke & Roland W. Wentworth, 1981. "On the Marginal Cost of Wastewater Services," Land Economics, University of Wisconsin Press, vol. 57(4), pages 558-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Lu & David Deller & Morten Hviid, 2019. "Price and Behavioural Signals to Encourage Household Water Conservation: Implications for the UK," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 475-491, January.
    2. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    3. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    4. Mark Hoffman & Andrew Worthington & Helen Higgs, 2005. "Modelling residential water demand with fixed volumetric charging in a large urban municipality: The case of Brisbane, Australia," School of Economics and Finance Discussion Papers and Working Papers Series 196, School of Economics and Finance, Queensland University of Technology.
    5. René Cabral & Luciano Ayala & Victor Hugo Delgado, 2017. "Residential Water Demand and Price Perception under Increasing Block Rates," Economics Bulletin, AccessEcon, vol. 37(1), pages 508-519.
    6. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    7. Randall G. Holcombe & DeEdgra W. Williams, 2008. "The Impact of Population Density on Municipal Government Expenditures," Public Finance Review, , vol. 36(3), pages 359-373, May.
    8. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    9. Andrés Chambouleyron, 2004. "Optimal Water Metering and Pricing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(4), pages 305-319, August.
    10. Yan Liu & Yan Wang & Han Zhao & Yibin Ao & Linchuan Yang, 2020. "Influences of Building Characteristics and Attitudes on Water Conservation Behavior of Rural Residents," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    11. Renwick, Mary E. & Green, Richard D., 2000. "Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 37-55, July.
    12. Duke, Joshua M. & Ehemann, Robert W. & Mackenzie, John, 2002. "The Distributional Effects of Water Quantity Management Strategies: A Spatial Analysis," The Review of Regional Studies, Southern Regional Science Association, vol. 32(1), pages 19-35, Winter/Sp.
    13. Mark Hoffmann & Andrew Worthington & Helen Higgs, 2006. "Urban water demand with fixed volumetric charging in a large municipality: the case of Brisbane, Australia ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(3), pages 347-359, September.
    14. Corral, Leonardo & Fisher, Anthony C. & Hatch, Nile W., 1999. "Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint," CUDARE Working Papers 7155, University of California, Berkeley, Department of Agricultural and Resource Economics.
    15. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    16. Mini, C. & Hogue, T.S. & Pincetl, S., 2015. "The effectiveness of water conservation measures on summer residential water use in Los Angeles, California," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 136-145.
    17. Groothuis, Peter A. & Cockerill, Kristan & Mohr, Tanga McDaniel, 2015. "Water does not flow up hill: determinants of willingness to pay for water conservation measures in the mountains of western North Carolina," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 59(C), pages 88-95.
    18. Boyer, Christopher N. & Adams, Damian C. & Borisova, Tatiana, 2014. "Drivers of Price and Nonprice Water Conservation by Urban and Rural Water Utilities: An Application of Predictive Models to Four Southern States," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 46(1), pages 41-56, February.
    19. Aisbett, Emma & Steinhauser, Ralf, 2011. "Does anybody give a dam? The importance of public awareness for urban water conservation during drought," Research Reports 107850, Australian National University, Environmental Economics Research Hub.
    20. Zhu, Shanjiang & Du, Longyuan & Zhang, Lei, 2013. "Rationing and pricing strategies for congestion mitigation: Behavioral theory, econometric model, and application in Beijing," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 210-224.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apeclt:v:15:y:2008:i:9:p:717-722. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEL20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.