IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i7p1887-1906.html
   My bibliography  Save this article

Conjunctive Use of Surface and Groundwater with Inter-Basin Transfer Approach: Case Study Piranshahr

Author

Listed:
  • M. Rezapour Tabari
  • Abdollah Yazdi

Abstract

Disregarding water as a key sustainable development has led to the water crisis in Iran. This problem is the biggest factor for marginalizing the planning and long-term management of water. The sustainable development policies in water resources management of IRAN require consideration of the different aspects of management that each of them demands the scientific integrated programs. Optimal use of inter-basin surface and groundwater resources and transfer of surplus water to adjacent basins are important from different aspects. The purpose of this study is to develop an efficient optimization model based on inter-basin water resources and restoration of outer-basin water resources. In the proposed model the three different objectives are as follow supplying inter-basin water demand, reducing the amount of water output of the boundary of IRAN and increasing water transfer to adjacent basins (Urmia Lake basin) are considered. In this model, water allocation is done based on consumption and resources priorities and groundwater table level constraints. In this research, the non-dominate sorting genetic algorithm is used for performing the developed model regarding the complexity and nonlinearity of the objectives and the decision variables. The optimal allocation of each water resources and water transfer to adjacent basin can be determined by using of proposed model. Optimal allocation policy presented based on optimal value and planning horizon. The results show that we can transfer considerable volume of water resources within the basin for restoration the outside basin and prevent the great flow of water by the border rivers applying the optimal operation policy. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • M. Rezapour Tabari & Abdollah Yazdi, 2014. "Conjunctive Use of Surface and Groundwater with Inter-Basin Transfer Approach: Case Study Piranshahr," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1887-1906, May.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:7:p:1887-1906
    DOI: 10.1007/s11269-014-0578-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0578-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0578-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    2. Abbas Afshar & Leila Ostadrahimi & Abdollah Ardeshir & Saeed Alimohammadi, 2008. "Lumped Approach to a Multi-Period–Multi-Reservoir Cyclic Storage System Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(12), pages 1741-1760, December.
    3. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    4. Azaiez, M. N., 2002. "A model for conjunctive use of ground and surface water with opportunity costs," European Journal of Operational Research, Elsevier, vol. 143(3), pages 611-624, December.
    5. Vedula, S. & Mujumdar, P.P. & Chandra Sekhar, G., 2005. "Conjunctive use modeling for multicrop irrigation," Agricultural Water Management, Elsevier, vol. 73(3), pages 193-221, May.
    6. Sethi, Laxmi Narayan & Panda, Sudhindra N. & Nayak, Manoj K., 2006. "Optimal crop planning and water resources allocation in a coastal groundwater basin, Orissa, India," Agricultural Water Management, Elsevier, vol. 83(3), pages 209-220, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
    2. R. Roozbahani & B. Abbasi & S. Schreider, 2015. "Optimal allocation of water to competing stakeholders in a shared watershed," Annals of Operations Research, Springer, vol. 229(1), pages 657-676, June.
    3. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    4. Xiang-Zhou Xu & Guo-Dong Song & Tian-Min Dang & Jian-Wei Liu & Hong-Wu Zhang & Hang Gao & Ya-Kun Liu, 2018. "Environment and sustainability of the Middle Route, South-to-North Water Transfer Project in China: a close look," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(6), pages 2415-2426, December.
    5. Reza Sepahvand & Hamid R. Safavi & Farshad Rezaei, 2019. "Multi-Objective Planning for Conjunctive Use of Surface and Ground Water Resources Using Genetic Programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 2123-2137, April.
    6. Dieu Tien Bui & Dawood Talebpour Asl & Ezatolla Ghanavati & Nadhir Al-Ansari & Saeed Khezri & Kamran Chapi & Ata Amini & Binh Thai Pham, 2020. "Effects of Inter-Basin Water Transfer on Water Flow Condition of Destination Basin," Sustainability, MDPI, vol. 12(1), pages 1-21, January.
    7. R. Roozbahani & B. Abbasi & S. Schreider & A. Ardakani, 2014. "A Multi-objective Approach for Transboundary River Water Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5447-5463, December.
    8. C. Dai & Y. P. Cai & W. T. Lu & H. Liu & H. C. Guo, 2016. "Conjunctive Water Use Optimization for Watershed-Lake Water Distribution System under Uncertainty: a Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4429-4449, September.
    9. Reza Roozbahani & Babak Abbasi & Sergei Schreider & Zahra Hosseinifard, 2020. "A basin-wide approach for water allocation and dams location-allocation," Annals of Operations Research, Springer, vol. 287(1), pages 323-349, April.
    10. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Tabari & Jaber Soltani, 2013. "Multi-Objective Optimal Model for Conjunctive Use Management Using SGAs and NSGA-II Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 37-53, January.
    2. Hamid Safavi & Mahdieh Esmikhani, 2013. "Conjunctive Use of Surface Water and Groundwater: Application of Support Vector Machines (SVMs) and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2623-2644, May.
    3. Singh, Ajay, 2014. "Simulation–optimization modeling for conjunctive water use management," Agricultural Water Management, Elsevier, vol. 141(C), pages 23-29.
    4. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    5. Mandal, Uday & Dhar, Anirban & Panda, Sudhindra N., 2021. "Enhancement of sustainable agricultural production system by integrated natural resources management framework under climatic and operational uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    6. D.-A. An-Vo & S. Mushtaq & T. Nguyen-Ky & J. Bundschuh & T. Tran-Cong & T. Maraseni & K. Reardon-Smith, 2015. "Nonlinear Optimisation Using Production Functions to Estimate Economic Benefit of Conjunctive Water Use for Multicrop Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2153-2170, May.
    7. Safavi, Hamid R. & Enteshari, Sajad, 2016. "Conjunctive use of surface and ground water resources using the ant system optimization," Agricultural Water Management, Elsevier, vol. 173(C), pages 23-34.
    8. S. S. Khandelwal & S. D. Dhiman, 2018. "Optimal Allocation of Land and Water Resources in a Canal Command Area in the Deterministic and Stochastic Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1569-1584, March.
    9. Xinyu Wu & Yuan Lei & Chuntian Cheng & Qilin Ying, 2023. "An Optimal Operation Method for Parallel Hydropower Systems Combining Reservoir Level Control and Power Distribution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1729-1745, March.
    10. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    11. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    12. Stahn, Hubert & Tomini, Agnes, 2021. "Externality and common-pool resources: The case of artesian aquifers," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    13. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    14. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, France.
    15. Zhang, Dongmei & Guo, Ping, 2016. "Integrated agriculture water management optimization model for water saving potential analysis," Agricultural Water Management, Elsevier, vol. 170(C), pages 5-19.
    16. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    17. Seyedeh Hadis Moghadam & Parisa-Sadat Ashofteh & Hugo A. Loáiciga, 2022. "Optimal Water Allocation of Surface and Ground Water Resources Under Climate Change with WEAP and IWOA Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(9), pages 3181-3205, July.
    18. Yang, Gaiqiang & Guo, Ping & Huo, Lijuan & Ren, Chongfeng, 2015. "Optimization of the irrigation water resources for Shijin irrigation district in north China," Agricultural Water Management, Elsevier, vol. 158(C), pages 82-98.
    19. Mina Khosravi & Abbas Afshar & Amir Molajou, 2022. "Decision Tree-Based Conditional Operation Rules for Optimal Conjunctive Use of Surface and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(6), pages 2013-2025, April.
    20. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:7:p:1887-1906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.