IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v26y2012i2p499-516.html
   My bibliography  Save this article

A Methodology to Model Water Demand based on the Identification of Homogenous Client Segments. Application to the City of Barcelona

Author

Listed:
  • Sara Fontdecaba
  • Pere Grima
  • Lluís Marco
  • Lourdes Rodero
  • José Sánchez-Espigares
  • Ignasi Solé
  • Xavier Tort-Martorell
  • Dominique Demessence
  • Victor Martínez De Pablo
  • Jordi Zubelzu

Abstract

Water management has become a vital concern for both water supply companies and public administrations due to the importance of water for life and current scarcity in many areas. Studies exist that attempt to explain which factors influence water demand. In general, these studies are based on a small sample of consumers and they predict domestic water consumption using ordinary least squares regression models with a small number of socioeconomic variables as predictors, usually: price, population, population density, age, and nationality. We have followed a different approach in two ways; one, in the scope of the study: we have included in the study all consumers of the Barcelona area and as many socioeconomic variables as possible (all the available data from official statistics institutions); and also in the methodology: first, we have segmented clients into homogeneous socioeconomic groups that, as we show later in the Barcelona case, also have homogeneous water consumption habits. This allows for a better understanding of water consumption behaviours and also for better predictions through modeling water consumption in each segment. This is so because the segments’ inner variability is smaller than the general one; thus, the models have a smaller residual variance and allow for more accurate forecasts of water consumption. The methodology was applied to the Barcelona metropolitan area, where it was possible to construct a database including both water consumption and socioeconomic information with more than one million observations. Data quality was a primary concern, and thus a careful exploratory data analysis procedure led to a careful treatment of missing observations and to the detection and correction or removal of anomalies. This has resulted in a stable division of the one million water consumers into 6 homogeneous groups and models for each of the groups. Although the methodology has been developed and applied to the Barcelona area, it is general and thus can be applied to any other region or metropolitan area. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Sara Fontdecaba & Pere Grima & Lluís Marco & Lourdes Rodero & José Sánchez-Espigares & Ignasi Solé & Xavier Tort-Martorell & Dominique Demessence & Victor Martínez De Pablo & Jordi Zubelzu, 2012. "A Methodology to Model Water Demand based on the Identification of Homogenous Client Segments. Application to the City of Barcelona," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 499-516, January.
  • Handle: RePEc:spr:waterr:v:26:y:2012:i:2:p:499-516
    DOI: 10.1007/s11269-011-9928-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-011-9928-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-011-9928-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petra Hellegers & Richard Soppe & Chris Perry & Wim Bastiaanssen, 2010. "Remote Sensing and Economic Indicators for Supporting Water Resources Management Decisions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2419-2436, September.
    2. M. Babel & A. Gupta & P. Pradhan, 2007. "A multivariate econometric approach for domestic water demand modeling: An application to Kathmandu, Nepal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(3), pages 573-589, March.
    3. Céline Nauges & Alban Thomas, 2003. "Long-run Study of Residential Water Consumption," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(1), pages 25-43, September.
    4. Griffin, Ronald C. & Chang, Chan, 1991. "Seasonality In Community Water Demand," Western Journal of Agricultural Economics, Western Agricultural Economics Association, vol. 16(2), pages 1-11, December.
    5. Duke, Joshua M. & Ehemann, Robert W. & Mackenzie, John, 2002. "The Distributional Effects of Water Quantity Management Strategies: A Spatial Analysis," The Review of Regional Studies, Southern Regional Science Association, vol. 32(1), pages 19-35, Winter/Sp.
    6. Mukand Babel & Victor Shinde, 2011. "Identifying Prominent Explanatory Variables for Water Demand Prediction Using Artificial Neural Networks: A Case Study of Bangkok," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1653-1676, April.
    7. Massimiliano Mazzanti & Anna Montini, 2006. "The determinants of residential water demand: empirical evidence for a panel of Italian municipalities," Applied Economics Letters, Taylor & Francis Journals, vol. 13(2), pages 107-111.
    8. Renwick, Mary E. & Green, Richard D., 2000. "Do Residential Water Demand Side Management Policies Measure Up? An Analysis of Eight California Water Agencies," Journal of Environmental Economics and Management, Elsevier, vol. 40(1), pages 37-55, July.
    9. James J. Opaluch, 1982. "Urban Residential Demand for Water in the United States: Further Discussion," Land Economics, University of Wisconsin Press, vol. 58(2), pages 225-227.
    10. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    11. Matthew E. Kahn, 2000. "The environmental impact of suburbanization," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 569-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Fontdecaba & José Sánchez-Espigares & Lluís Marco-Almagro & Xavier Tort-Martorell & Francesc Cabrespina & Jordi Zubelzu, 2013. "An Approach to Disaggregating Total Household Water Consumption into Major End-Uses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2155-2177, May.
    2. Coleman Shirley Y., 2016. "Data-Mining Opportunities for Small and Medium Enterprises with Official Statistics in the UK," Journal of Official Statistics, Sciendo, vol. 32(4), pages 849-865, December.
    3. Dália Loureiro & Aisha Mamade & Marta Cabral & Conceição Amado & Dídia Covas, 2016. "A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3443-3457, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrique Monteiro, 2010. "Residential Water Demand in Portugal: checking for efficiency-based justifications for increasing block tariffs," Working Papers Series 1 ercwp0110, ISCTE-IUL, Business Research Unit (BRU-IUL).
    2. Md Haque & Ataur Rahman & Dharma Hagare & Golam Kibria, 2014. "Probabilistic Water Demand Forecasting Using Projected Climatic Data for Blue Mountains Water Supply System in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1959-1971, May.
    3. María Ángeles García-Valiñas & Sara Suárez-Fernández, 2022. "Are Economic Tools Useful to Manage Residential Water Demand? A Review of Old Issues and Emerging Topics," Post-Print hal-04067487, HAL.
    4. Elena Domene & David Saurí, 2006. "Urbanisation and Water Consumption: Influencing Factors in the Metropolitan Region of Barcelona," Urban Studies, Urban Studies Journal Limited, vol. 43(9), pages 1605-1623, August.
    5. Sholpan Saimova & Gulsim Makenova & Aizhan Skakova & Aitolkyn Moldagaliyeva & Ardak Beisembinova & Zhamilya Berdiyarova & Bagdagul Imanbekova, 2020. "Towards a Low-carbon Economic Sustainable Development: Scenarios and Policies for Kazakhstan," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 638-646.
    6. Arbues, Fernando & Garcia-Valinas, Maria Angeles & Martinez-Espineira, Roberto, 2003. "Estimation of residential water demand: a state-of-the-art review," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 32(1), pages 81-102, March.
    7. Nataraj, Shanthi & Hanemann, W. Michael, 2011. "Does marginal price matter? A regression discontinuity approach to estimating water demand," Journal of Environmental Economics and Management, Elsevier, vol. 61(2), pages 198-212, March.
    8. Giulia Romano & Nicola Salvati & Andrea Guerrini, 2014. "Factors Affecting Water Utility Companies’ Decision to Promote the Reduction of Household Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(15), pages 5491-5505, December.
    9. Roberto Martínez-Espiñeira, 2007. "An Estimation of Residential Water Demand Using Co-Integration and Error Correction Techniques," Journal of Applied Economics, Taylor & Francis Journals, vol. 10(1), pages 161-184, May.
    10. Schleich, Joachim & Hillenbrand, Thomas, 2009. "Determinants of residential water demand in Germany," Ecological Economics, Elsevier, vol. 68(6), pages 1756-1769, April.
    11. Diakité, Daouda & Thomas, Alban, 2011. "La demande domestique d’eau potable : une étude sur un panel de communes ivoiriennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 87(3), pages 269-299, septembre.
    12. Andrew C. Worthington & Mark Hoffman, 2008. "An Empirical Survey Of Residential Water Demand Modelling," Journal of Economic Surveys, Wiley Blackwell, vol. 22(5), pages 842-871, December.
    13. Rita Martins & Adelino Fortunato, 2005. "Residential water demand under block rates: a Portuguese case study," GEMF Working Papers 2005-09, GEMF, Faculty of Economics, University of Coimbra.
    14. Steven Buck & Mehdi Nemati & David Sunding, 2023. "Consumer welfare consequences of the California drought conservation mandate," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(1), pages 510-533, March.
    15. Worthington, Andrew C., 2010. "Commercial and Industrial Water Demand Estimation: Theoretical and Methodological Guidelines for Applied Economics Research/Estimación de la demanda de agua comercial e industrial: pautas teóricas y m," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 237-258, Agosto.
    16. R. Quentin Grafton & Tom Kompas & Hang To & Michael Ward, 2009. "Residential Water Consumption: A Cross Country Analysis," Environmental Economics Research Hub Research Reports 0923, Environmental Economics Research Hub, Crawford School of Public Policy, The Australian National University, revised Aug 2009.
    17. Milan Ščasný & Šarlota Smutná, 2021. "Estimation of price and income elasticity of residential water demand in the Czech Republic over three decades," Journal of Consumer Affairs, Wiley Blackwell, vol. 55(2), pages 580-608, June.
    18. Buck, Steven & Nemati, Mehdi & Sunding, David, 2016. "The Welfare Consequences of the 2015 California Drought Mandate: Evidence from New Results on Monthly Water Demand," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236049, Agricultural and Applied Economics Association.
    19. Renzetti, Steven & Dupont, Diane P. & Chitsinde, Tina, 2015. "An empirical examination of the distributional impacts of water pricing reforms," Utilities Policy, Elsevier, vol. 34(C), pages 63-69.
    20. Subhash Andey & Prakash Kelkar, 2009. "Influence of Intermittent and Continuous Modes of Water Supply on Domestic Water Consumption," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2555-2566, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:26:y:2012:i:2:p:499-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.