IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v22y2014i1p343-362.html
   My bibliography  Save this article

Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions

Author

Listed:
  • Isabel Martins
  • Mujing Ye
  • Miguel Constantino
  • Maria Conceição Fonseca
  • Jorge Cadima

Abstract

In forest harvest scheduling problems, one must decide which stands to harvest in each period during a planning horizon. A typical requirement in these problems is a steady flow of harvested timber, mainly to ensure that the industry is able to continue operating with similar levels of machine and labor utilizations. The integer programming approaches described use the so-called volume constraints to impose such a steady yield. These constraints do not directly impose a limit on the global deviation of the volume harvested over the planning horizon or use pre-defined target harvest levels. Addressing volume constraints generally increases the difficulty of solving the integer programming formulations, in particular those proposed for the area restriction model approach. In this paper, we present a new type of volume constraint as well as a multi-objective programming approach to achieve an even flow of timber. We compare the main basic approaches from a computational perspective. The new volume constraints seem to more explicitly control the global deviation of the harvested volume, while the multi-objective approach tends to provide the best profits for a given dispersion of the timber flow. Neither approach substantially changed the computational times involved. Copyright Sociedad de Estadística e Investigación Operativa 2014

Suggested Citation

  • Isabel Martins & Mujing Ye & Miguel Constantino & Maria Conceição Fonseca & Jorge Cadima, 2014. "Modeling target volume flows in forest harvest scheduling subject to maximum area restrictions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 343-362, April.
  • Handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:343-362
    DOI: 10.1007/s11750-012-0260-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-012-0260-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-012-0260-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chalmet, L. G. & Lemonidis, L. & Elzinga, D. J., 1986. "An algorithm for the bi-criterion integer programming problem," European Journal of Operational Research, Elsevier, vol. 25(2), pages 292-300, May.
    2. Brumelle, Shelby & Granot, Daniel & Halme, Merja & Vertinsky, Ilan, 1998. "A tabu search algorithm for finding good forest harvest schedules satisfying green-up constraints," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 408-424, April.
    3. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    4. Marcos Goycoolea & Alan T. Murray & Francisco Barahona & Rafael Epstein & Andrés Weintraub, 2005. "Harvest Scheduling Subject to Maximum Area Restrictions: Exploring Exact Approaches," Operations Research, INFORMS, vol. 53(3), pages 490-500, June.
    5. Vielma, Juan Pablo & Murray, Alan T. & Ryan, David M. & Weintraub, Andres, 2007. "Improving computational capabilities for addressing volume constraints in forest harvest scheduling problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1246-1264, January.
    6. Martins, Isabel & Constantino, Miguel & Borges, Jose G., 2005. "A column generation approach for solving a non-temporal forest harvest model with spatial structure constraints," European Journal of Operational Research, Elsevier, vol. 161(2), pages 478-498, March.
    7. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    8. Urmila Diwekar, 2008. "Introduction to Applied Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-76635-5, June.
    9. Terry Ross, G. & Soland, Richard M., 1980. "A multicriteria approach to the location of public facilities," European Journal of Operational Research, Elsevier, vol. 4(5), pages 307-321, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neto, Teresa & Constantino, Miguel & Martins, Isabel & Pedroso, João Pedro, 2020. "A multi-objective Monte Carlo tree search for forest harvest scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1115-1126.
    2. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    3. Dong, Lingbo & Lu, Wei & Liu, Zhaogang, 2018. "Developing alternative forest spatial management plans when carbon and timber values are considered: A real case from northeastern China," Ecological Modelling, Elsevier, vol. 385(C), pages 45-57.
    4. Constantino, Miguel & Martins, Isabel, 2018. "Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 723-734.
    5. Helenice de Oliveira Florentino & Chandra Irawan & Angelo Filho Aliano & Dylan F. Jones & Daniela Renata Cantane & Jonis Jecks Nervis, 2018. "A multiple objective methodology for sugarcane harvest management with varying maturation periods," Annals of Operations Research, Springer, vol. 267(1), pages 153-177, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teresa Neto & Miguel Constantino & Isabel Martins & João Pedro Pedroso, 2017. "Forest harvest scheduling with clearcut and core area constraints," Annals of Operations Research, Springer, vol. 258(2), pages 453-478, November.
    2. Isabel Martins & Filipe Alvelos & Miguel Constantino, 2012. "A branch-and-price approach for harvest scheduling subject to maximum area restrictions," Computational Optimization and Applications, Springer, vol. 51(1), pages 363-385, January.
    3. Rodolfo Carvajal & Miguel Constantino & Marcos Goycoolea & Juan Pablo Vielma & Andrés Weintraub, 2013. "Imposing Connectivity Constraints in Forest Planning Models," Operations Research, INFORMS, vol. 61(4), pages 824-836, August.
    4. Neto, Teresa & Constantino, Miguel & Martins, Isabel & Pedroso, João Pedro, 2020. "A multi-objective Monte Carlo tree search for forest harvest scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1115-1126.
    5. Könnyű, Nóra & Tóth, Sándor F., 2013. "A cutting plane method for solving harvest scheduling models with area restrictions," European Journal of Operational Research, Elsevier, vol. 228(1), pages 236-248.
    6. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    7. Miguel Constantino & Isabel Martins & José G. Borges, 2008. "A New Mixed-Integer Programming Model for Harvest Scheduling Subject to Maximum Area Restrictions," Operations Research, INFORMS, vol. 56(3), pages 542-551, June.
    8. Constantino, Miguel & Martins, Isabel, 2018. "Branch-and-cut for the forest harvest scheduling subject to clearcut and core area constraints," European Journal of Operational Research, Elsevier, vol. 265(2), pages 723-734.
    9. Sinha, Ankur & Rämö, Janne & Malo, Pekka & Kallio, Markku & Tahvonen, Olli, 2017. "Optimal management of naturally regenerating uneven-aged forests," European Journal of Operational Research, Elsevier, vol. 256(3), pages 886-900.
    10. Ran Wei & Alan Murray, 2015. "Spatial uncertainty in harvest scheduling," Annals of Operations Research, Springer, vol. 232(1), pages 275-289, September.
    11. Hernandez, M. & Gómez, T. & Molina, J. & León, M.A. & Caballero, R., 2014. "Efficiency in forest management: A multiobjective harvest scheduling model," Journal of Forest Economics, Elsevier, vol. 20(3), pages 236-251.
    12. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    13. Rachel St. John & Sándor Tóth, 2015. "Spatially explicit forest harvest scheduling with difference equations," Annals of Operations Research, Springer, vol. 232(1), pages 235-257, September.
    14. Oğuzhan Ahmet Arık, 2021. "Long-term Plantation and Harvesting Planning for Industrial Plantation Forest Areas," SN Operations Research Forum, Springer, vol. 2(2), pages 1-23, June.
    15. Huizhen Zhang & Miguel Constantino & André Falcão, 2011. "Modeling forest core area with integer programming," Annals of Operations Research, Springer, vol. 190(1), pages 41-55, October.
    16. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    17. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    18. Augustynczik, A.L.D. & Arce, J.E. & Silva, A.C.L., 2016. "Aggregating forest harvesting activities in forest plantations through Integer Linear Programming and Goal Programming," Journal of Forest Economics, Elsevier, vol. 24(C), pages 72-81.
    19. Zuo-Jun Max Shen & Mark S. Daskin, 2005. "Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 188-207, September.
    20. Viana, Ana & Pinho de Sousa, Jorge, 2000. "Using metaheuristics in multiobjective resource constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 120(2), pages 359-374, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:22:y:2014:i:1:p:343-362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.